U-tiling: UQC125
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc123 |
*266 |
(2,3,2) |
{4,6} |
{12.3.3.12}{3.3.3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12258
|
|
Pn-3m |
224 |
cubic |
{4,6} |
28 |
(2,3) |
G
|
False
|
|
sqc12167
|
|
Ia-3 |
206 |
cubic |
{4,6} |
28 |
(2,3) |
D
|
False
|
|
sqc12166
|
|
Fd-3m |
227 |
cubic |
{4,6} |
28 |
(2,3) |
Topological data
Vertex degrees | {4,6} |
2D vertex symbol | {12.3.3.12}{3.3.3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<5.1:240:31 7 8 5 41 10 56 22 23 15 71 27 28 20 96 25 121 30 52 53 35 156 62 63 40 67 68 45 191 77 78 50 86 55 92 93 60 206 65 111 70 117 118 75 226 80 141 132 133 85 137 138 90 161 95 152 153 100 136 127 128 105 176 167 168 110 172 173 115 196 120 187 188 125 171 130 211 135 140 182 183 145 216 177 178 150 201 155 197 198 160 192 193 165 231 170 175 180 236 185 221 190 195 200 227 228 205 222 223 210 232 233 215 237 238 220 225 230 235 240,2 4 10 7 9 12 14 25 17 19 30 22 24 27 29 32 34 55 37 39 65 42 44 70 47 49 80 52 54 57 59 95 62 64 67 69 72 74 120 77 79 82 84 135 87 89 140 92 94 97 99 155 102 104 130 107 109 170 112 114 175 117 119 122 124 190 127 129 132 134 137 139 142 144 185 147 149 180 152 154 157 159 200 162 164 195 167 169 172 174 177 179 182 184 187 189 192 194 197 199 202 204 230 207 209 225 212 214 235 217 219 240 222 224 227 229 232 234 237 239,11 3 14 15 16 8 19 20 13 18 36 23 39 40 46 28 49 50 56 33 59 60 38 71 43 74 75 48 81 53 84 85 58 101 63 104 105 106 68 109 110 73 126 78 129 130 83 141 88 144 145 146 93 149 150 156 98 159 160 103 108 176 113 179 180 181 118 184 185 191 123 194 195 128 201 133 204 205 206 138 209 210 143 148 211 153 214 215 158 216 163 219 220 221 168 224 225 226 173 229 230 178 183 231 188 234 235 193 236 198 239 240 203 208 213 218 223 228 233 238:12 3 12 3 12 3 3 3 3 3 3 3 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,4 6 4 4 4 4 6 4 6 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4> {(0, 185): 't2', (0, 50): 't1^-1', (0, 176): 'tau2', (0, 177): 'tau2', (0, 182): 'tau3', (0, 180): 't2', (0, 181): 'tau3', (1, 234): 'tau1^-1', (1, 109): 'tau3', (0, 175): 't1', (1, 239): 'tau1', (0, 160): 't3^-1', (0, 166): 'tau3^-1', (0, 167): 'tau3^-1', (0, 165): 't2^-1', (0, 145): 't3', (0, 150): 't3', (1, 84): 'tau2^-1', (0, 140): 't1', (0, 130): 't3^-1', (0, 131): 'tau2', (0, 132): 'tau2', (1, 184): 'tau3', (0, 115): 't2', (1, 179): 'tau2', (0, 232): 'tau1^-1', (0, 110): 't1', (0, 236): 'tau1', (0, 237): 'tau1', (0, 231): 'tau1^-1'}