U-tiling: UQC1294
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1419 |
*22222 |
(2,6,3) |
{6,4} |
{4.4.4.4.4.4}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2486
|
|
P4/mmm |
123 |
tetragonal |
{5,4} |
8 |
(2,4) |
G
|
False
|
|
sqc9453
|
|
I4122 |
98 |
tetragonal |
{6,4} |
16 |
(2,7) |
D
|
False
|
|
sqc3396
|
|
P4222 |
93 |
tetragonal |
{6,4} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,4} |
2D vertex symbol | {4.4.4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<50.3:160:21 4 5 26 27 28 29 50 31 14 15 36 37 38 39 60 24 25 70 34 35 90 61 44 45 66 67 68 69 81 54 55 86 87 88 89 64 65 101 74 75 106 107 108 109 130 84 85 111 94 95 116 117 118 119 140 104 105 150 114 115 160 141 124 125 146 147 148 149 151 134 135 156 157 158 159 144 145 154 155,2 8 6 7 10 12 18 16 17 20 22 28 26 27 30 32 38 36 37 40 42 48 46 47 50 52 58 56 57 60 62 68 66 67 70 72 78 76 77 80 82 88 86 87 90 92 98 96 97 100 102 108 106 107 110 112 118 116 117 120 122 128 126 127 130 132 138 136 137 140 142 148 146 147 150 152 158 156 157 160,91 3 5 16 17 9 100 71 13 15 19 80 111 23 25 36 37 29 120 101 33 35 39 110 131 43 45 76 77 49 140 121 53 55 96 97 59 130 151 63 65 106 107 69 160 73 75 79 141 83 85 116 117 89 150 93 95 99 103 105 109 113 115 119 123 125 136 137 129 133 135 139 143 145 156 157 149 153 155 159:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,6 4 6 6 4 6 6 4 6 4 6 4 6 4 4 4> {(2, 155): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 20): 't1^-1', (2, 89): 't1^-1', (0, 117): 'tau3^-1*t2', (2, 56): 't2', (0, 55): 't2*tau3^-1', (0, 140): 't1*tau3*t2^-1', (2, 116): 'tau3^-1', (0, 118): 'tau3^-1*t2', (2, 106): 'tau2', (2, 55): 't2', (0, 39): 't1', (0, 126): 't3^-1*tau2^-1', (2, 45): 't3', (2, 80): 't1^-1', (0, 135): 't3*tau2', (0, 116): 'tau3^-1*t2', (0, 25): 't1^-1', (2, 126): 'tau1^-1', (0, 37): 't1', (0, 157): 't1^-1*tau3^-1*t2', (0, 136): 't2^-1*tau3*t1', (2, 115): 'tau3^-1', (0, 45): 't3*tau2', (0, 150): 'tau2^-1*t3^-1', (2, 36): 't1', (2, 105): 'tau2', (2, 156): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 38): 't1', (0, 147): 'tau2*t3', (0, 158): 't1^-1*tau3^-1*t2', (0, 108): 'tau2*t3', (2, 29): 't1^-1', (0, 60): 'tau2^-1*t3^-1', (0, 148): 'tau2*t3', (0, 119): 't1', (2, 125): 'tau1^-1', (0, 36): 't1', (0, 145): 't1*tau3*t2^-1', (0, 50): 't2*tau3^-1', (2, 46): 't3', (0, 106): 'tau2*t3', (0, 0): 't1', (0, 77): 't3^-1*tau2^-1', (2, 35): 't1', }