U-tiling: UQC1424
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc920 |
*2626 |
(2,5,4) |
{6,3} |
{12.4.4.4.4.12}{4.6.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6192
|
|
R-3m |
166 |
rhombohedral |
{6,3} |
12 |
(2,5) |
G
|
False
|
|
sqc6189
|
|
R-3 |
148 |
rhombohedral |
{6,3} |
12 |
(2,5) |
D
|
False
|
|
sqc6191
|
|
R-3m |
166 |
rhombohedral |
{6,3} |
12 |
(2,5) |
Topological data
Vertex degrees | {6,3} |
2D vertex symbol | {12.4.4.4.4.12}{4.6.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<43.1:108:19 11 12 94 95 7 98 99 28 103 104 16 107 108 38 39 67 68 25 71 72 47 48 58 59 34 62 63 55 85 86 43 89 90 64 76 77 52 80 81 74 75 61 83 84 70 91 79 100 88 101 102 97 106,2 4 6 8 90 11 13 15 17 81 20 22 24 26 108 29 31 33 35 99 38 40 42 44 54 47 49 51 53 56 58 60 62 72 65 67 69 71 74 76 78 80 83 85 87 89 92 94 96 98 101 103 105 107,82 3 5 87 88 9 73 12 14 78 79 18 100 21 23 105 106 27 91 30 32 96 97 36 46 39 41 51 52 45 48 50 54 64 57 59 69 70 63 66 68 72 75 77 81 84 86 90 93 95 99 102 104 108:12 4 4 6 4 4 4 4 4 4 4,6 3 6 3 6 3 6 3 6 3 6 3> {(0, 8): 't1^-1', (0, 22): 't3', (0, 48): 't2', (2, 32): 'tau3', (2, 15): 'tau3', (2, 50): 'tau1^-1', (0, 13): 't1^-1', (1, 98): 'tau3^-1', (0, 53): 't2', (2, 45): 'tau1^-1', (0, 3): 't1^-1', (2, 63): 'tau1^-1', (0, 17): 't1^-1', (0, 61): 't2^-1', (1, 89): 'tau2', (0, 40): 't3', (2, 6): 'tau2^-1', (0, 25): 't3', (2, 9): 'tau3', (0, 4): 't1^-1', (2, 60): 'tau1', (0, 39): 't3', (2, 27): 'tau3', (2, 14): 'tau3', (0, 62): 't2^-1', (0, 21): 't3', (0, 12): 't1^-1', (0, 26): 't3', (2, 24): 'tau2^-1', (0, 52): 't2', (1, 71): 'tau1^-1', (1, 107): 'tau2', (0, 49): 't2', (2, 33): 'tau3', (0, 16): 't1^-1', (2, 0): 'tau2^-1', (2, 51): 'tau1^-1', (0, 43): 't3', (2, 18): 'tau2^-1', (2, 5): 'tau2^-1', (0, 57): 't2^-1', (2, 23): 'tau2^-1', (0, 7): 't1^-1', (1, 53): 'tau1^-1', (2, 59): 'tau1', (1, 80): 'tau3^-1', (0, 44): 't3', (0, 58): 't2^-1', }