U-tiling: UQC155
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc154 |
*2223 |
(2,2,2) |
{6,4} |
{3.6.3.3.6.3}{3.6.3.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12184
|
|
Pm-3m |
221 |
cubic |
{6,4} |
24 |
(2,2) |
G
|
False
|
|
sqc12185
|
|
I4132 |
214 |
cubic |
{6,4} |
24 |
(2,3) |
D
|
False
|
|
sqc7237
|
|
Pm-3n |
223 |
cubic |
{6,4} |
12 |
(2,2) |
Topological data
Vertex degrees | {6,4} |
2D vertex symbol | {3.6.3.3.6.3}{3.6.3.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<11.1:240:11 3 5 16 8 10 13 15 18 20 61 23 25 46 28 30 91 33 35 76 38 40 111 43 45 48 50 126 53 55 131 58 60 63 65 116 68 70 146 73 75 78 80 161 83 85 166 88 90 93 95 151 98 100 176 103 105 181 108 110 113 115 118 120 186 123 125 128 130 133 135 196 138 140 201 143 145 148 150 153 155 206 158 160 163 165 168 170 211 173 175 178 180 183 185 188 190 221 193 195 198 200 203 205 208 210 213 215 231 218 220 223 225 236 228 230 233 235 238 240,2 13 24 10 7 18 34 12 44 20 17 74 22 63 60 27 48 54 70 32 93 90 37 78 84 100 42 113 110 47 104 120 52 128 125 57 133 89 62 99 135 67 118 94 72 148 145 77 139 155 82 163 160 87 168 92 170 97 153 102 178 175 107 183 144 112 154 185 117 149 122 188 169 127 229 190 132 159 137 198 195 142 203 147 205 152 157 208 162 219 210 167 172 213 204 177 239 215 182 194 187 209 192 223 197 234 225 202 207 212 224 217 233 230 222 227 238 232 240 237,26 4 5 36 9 10 46 14 15 76 19 20 51 24 25 29 30 81 34 35 39 40 101 44 45 49 50 54 55 106 59 60 126 64 65 216 69 70 136 74 75 79 80 84 85 141 89 90 161 94 95 226 99 100 104 105 109 110 176 114 115 231 119 120 171 124 125 129 130 181 134 135 139 140 144 145 196 149 150 236 154 155 191 159 160 164 165 201 169 170 174 175 179 180 184 185 211 189 190 194 195 199 200 204 205 221 209 210 214 215 219 220 224 225 229 230 234 235 239 240:3 6 3 6 3 3 6 3 3 6 3 6 3 3 3 3 6 3 3 3 3 3 3 6 3 3 3 3 6 3 3 3,6 4 6 6 6 4 4 4 4 4 4 6 6 6 4 4 4 6 6 6 6 4 6 4> {(2, 190): 't2^-1', (1, 122): 't3^-1', (0, 190): 't2^-1', (2, 185): 't3', (1, 113): 'tau3^-1', (1, 112): 't1', (1, 174): 'tau2', (1, 118): 'tau2^-1', (1, 233): 'tau2^-1', (1, 232): 't3', (0, 40): 't1^-1', (1, 234): 't3*tau1^-1', (1, 109): 't1', (1, 238): 't2^-1*tau3*t1', (1, 97): 't2^-1', (1, 224): 't2*tau3^-1*t1^-1', (1, 99): 't2^-1', (1, 229): 'tau1', (1, 124): 't3^-1', (2, 215): 't3^-1', (1, 93): 't3^-1', (1, 223): 'tau1^-1*t3', (1, 208): 'tau1^-1', (0, 150): 't2', (1, 214): 'tau2', (1, 192): 't2^-1', (1, 194): 'tau3^-1', (1, 197): 't1', (0, 135): 't1^-1', (0, 120): 't3^-1', (2, 110): 't1', (2, 235): 't2^-1', (2, 135): 't1^-1', (1, 158): 't2', (1, 18): 't1^-1', (0, 215): 't3^-1'}