U-tiling: UQC1851
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1364 |
*2244 |
(2,4,4) |
{3,16} |
{4.4.6}{6.4.4.4.6.4.4.4.6.4.4.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2238
|
|
P4/mmm |
123 |
tetragonal |
{10,3} |
9 |
(2,4) |
G
|
False
|
|
sqc9351
|
|
I41/a |
88 |
tetragonal |
{16,3,3} |
18 |
(3,5) |
D
|
True
|
|
sqc8398
|
|
I41/amd |
141 |
tetragonal |
{12,3} |
18 |
(2,4) |
Topological data
Vertex degrees | {16,3} |
2D vertex symbol | {4.4.6}{6.4.4.4.6.4.4.4.6.4.4.4.6.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<18.1:160:61 62 5 6 67 68 19 20 71 72 15 16 77 78 81 82 25 26 87 88 49 50 101 102 35 36 107 108 59 60 111 112 45 46 117 118 91 92 55 56 97 98 65 66 79 80 75 76 85 86 119 120 95 96 109 110 105 106 115 116 151 152 125 126 157 158 149 150 141 142 135 136 147 148 159 160 145 146 155 156,21 3 64 7 10 9 31 13 74 17 20 19 23 84 27 30 29 33 104 37 40 39 131 43 114 47 50 49 151 53 94 57 60 59 91 63 67 70 69 111 73 77 80 79 121 83 87 90 89 93 97 100 99 141 103 107 110 109 113 117 120 119 123 154 127 130 129 133 144 137 140 139 143 147 150 149 153 157 160 159,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160:4 4 6 4 4 4 4 6 4 4 6 4 4 4 4 6 4 4,16 3 16 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3> {(0, 41): 't3^-1*tau2^-1', (0, 146): 't2*tau3^-1*t1^-1*tau2*t3', (0, 140): 't2*tau3^-1*t1^-1*tau2*t3', (0, 48): 't3^-1', (0, 30): 'tau3*t2^-1', (0, 151): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 118): 't3^-1', (0, 56): 't2^-1*tau3', (0, 27): 'tau2^-1*t3^-1', (0, 6): 't1^-1', (0, 159): 'tau1', (0, 20): 'tau2^-1*t3^-1', (0, 109): 't2', (0, 47): 't3^-1*tau2^-1', (0, 17): 't1^-1', (0, 61): 't1', (0, 40): 't3^-1*tau2^-1', (0, 149): 'tau1^-1', (0, 11): 't1^-1', (0, 37): 'tau3*t2^-1', (0, 157): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 51): 't2^-1*tau3', (0, 150): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 59): 't2^-1', (0, 26): 'tau2^-1*t3^-1', (0, 147): 't2*tau3^-1*t1^-1*tau2*t3', (0, 158): 'tau1', (0, 141): 't2*tau3^-1*t1^-1*tau2*t3', (0, 108): 't2', (0, 46): 't3^-1*tau2^-1', (0, 49): 't3^-1', (0, 16): 't1^-1', (0, 60): 't1', (0, 31): 'tau3*t2^-1', (0, 148): 'tau1^-1', (0, 10): 't1^-1', (0, 119): 't3^-1', (0, 57): 't2^-1*tau3', (0, 36): 'tau3*t2^-1', (0, 7): 't1^-1', (0, 156): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 50): 't2^-1*tau3', (0, 21): 'tau2^-1*t3^-1', (0, 58): 't2^-1', }