U-tiling: UQC1985
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1635 |
*22222 |
(2,5,4) |
{4,6} |
{4.4.6.4}{6.4.4.6.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10539
|
|
P4/mmm |
123 |
tetragonal |
{6,4} |
20 |
(2,5) |
G
|
False
|
|
sqc10536
|
|
I4122 |
98 |
tetragonal |
{6,4,4} |
20 |
(3,6) |
D
|
False
|
|
sqc4583
|
|
P4222 |
93 |
tetragonal |
{6,4} |
10 |
(2,5) |
Topological data
Vertex degrees | {6,4} |
2D vertex symbol | {4.4.6.4}{6.4.4.6.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<6.4:176:12 4 5 17 18 30 31 54 55 15 16 41 42 65 66 34 26 27 39 40 76 77 37 38 98 99 78 48 49 83 84 74 75 100 59 60 105 106 96 97 111 70 71 116 117 81 82 118 119 142 143 122 92 93 127 128 103 104 129 130 153 154 114 115 164 165 125 126 175 176 144 136 137 149 150 162 163 147 148 173 174 166 158 159 171 172 169 170,2 102 6 11 8 10 13 80 17 22 19 21 24 124 28 33 30 32 35 113 39 44 41 43 46 146 50 55 52 54 57 135 61 66 63 65 68 168 72 77 74 76 79 83 88 85 87 90 157 94 99 96 98 101 105 110 107 109 112 116 121 118 120 123 127 132 129 131 134 138 143 140 142 145 149 154 151 153 156 160 165 162 164 167 171 176 173 175,23 3 5 7 9 11 34 14 16 18 20 22 25 27 29 31 33 36 38 40 42 44 67 47 49 51 53 55 89 58 60 62 64 66 69 71 73 75 77 111 80 82 84 86 88 91 93 95 97 99 122 102 104 106 108 110 113 115 117 119 121 124 126 128 130 132 155 135 137 139 141 143 166 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176:4 6 4 4 6 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4,6 4 6 4 4 4 6 4 6 4 4 4 4 4 4 4 4 4 4 4> {(0, 39): 't1', (2, 22): 't1^-1', (0, 126): 'tau3^-1', (0, 115): 'tau2', (0, 60): 't2', (0, 41): 't1', (1, 90): 't1^-1', (0, 43): 't1', (0, 117): 'tau2*t3', (1, 123): 't1', (0, 171): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 148): 'tau1', (0, 129): 'tau3^-1*t2', (0, 55): 't2', (0, 173): 't1^-1*tau3^-1*t2', (0, 110): 'tau2', (0, 121): 'tau3^-1', (0, 162): 'tau2*t3', (0, 175): 't1^-1', (2, 44): 't3*tau2', (2, 55): 't2*tau3^-1', (0, 61): 't2', (0, 38): 't1', (2, 154): 't1*tau3*t2^-1', (0, 50): 't3', (0, 127): 'tau3^-1', (0, 40): 't1', (0, 149): 'tau1', (0, 139): 't3^-1*tau2^-1', (0, 116): 'tau2', (0, 33): 't1', (0, 42): 't1', (0, 159): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 128): 'tau3^-1*t2', (0, 118): 'tau2*t3', (2, 165): 'tau2^-1*t3^-1', (0, 44): 't3', (0, 143): 'tau1', (0, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 174): 't1^-1', (0, 49): 't3', (0, 172): 't1^-1*tau3^-1*t2', }