U-tiling: UQC2101
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1690 |
*22222 |
(2,6,4) |
{6,5} |
{4.3.4.4.3.4}{3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9368
|
|
P4/mmm |
123 |
tetragonal |
{4,6} |
16 |
(2,6) |
G
|
False
|
|
sqc10133
|
|
I4122 |
98 |
tetragonal |
{5,6} |
16 |
(2,7) |
D
|
False
|
|
sqc4305
|
|
P4222 |
93 |
tetragonal |
{5,6} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.3.4.4.3.4}{3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.1:176:45 101 102 6 7 107 31 32 22 56 79 80 17 18 85 42 43 67 123 124 28 29 129 44 89 112 113 39 40 118 145 146 50 51 151 75 76 88 134 135 61 62 140 97 98 110 167 168 72 73 173 121 133 83 84 119 120 156 157 94 95 162 132 144 105 106 130 131 155 116 117 166 127 128 138 139 163 164 154 149 150 174 175 160 161 176 171 172,2 4 27 8 9 11 13 15 38 19 20 22 24 26 30 31 33 35 37 41 42 44 46 48 71 52 53 55 57 59 93 63 64 66 68 70 74 75 77 79 81 115 85 86 88 90 92 96 97 99 101 103 126 107 108 110 112 114 118 119 121 123 125 129 130 132 134 136 159 140 141 143 145 147 170 151 152 154 156 158 162 163 165 167 169 173 174 176,23 3 5 7 30 10 33 34 14 16 18 41 21 44 25 27 29 32 36 38 40 43 67 47 49 51 74 54 77 89 58 60 62 96 65 99 69 71 73 76 111 80 82 84 118 87 121 91 93 95 98 122 102 104 106 129 109 132 113 115 117 120 124 126 128 131 155 135 137 139 162 142 165 166 146 148 150 173 153 176 157 159 161 164 168 170 172 175:4 4 3 4 4 4 3 4 4 4 4 4 3 4 4 3 4 4 3 4 3 3 4 3,5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6> {(2, 175): 'tau2^-1*t3^-1', (2, 7): 't1', (1, 114): 'tau2*t3', (1, 37): 't1', (0, 173): 't1^-1*tau3^-1*t2', (2, 164): 't1*tau3*t2^-1', (2, 98): 'tau3*t2^-1', (2, 32): 't1^-1', (0, 19): 't1^-1', (2, 172): 'tau2^-1*t3^-1', (0, 118): 'tau2*t3', (0, 163): 'tau2*t3', (1, 169): 't1^-1*tau3^-1*t2', (0, 130): 'tau3^-1*t2', (1, 125): 'tau3^-1*t2', (0, 174): 't1^-1*tau3^-1*t2', (2, 161): 't1*tau3*t2^-1', (0, 20): 't1^-1', (0, 109): 't2^-1', (2, 154): 'tau2*t3', (2, 121): 'tau3^-1*t2', (0, 161): 't1', (0, 128): 't1', (0, 54): 't3', (1, 158): 'tau2*t3', (0, 107): 't2^-1*tau3', (0, 162): 'tau2*t3', (2, 54): 't3*tau2', (2, 110): 'tau2*t3', (0, 23): 't1^-1', (2, 165): 't1^-1*tau3^-1*t2', (2, 62): 't2*tau3^-1', (0, 155): 't1', (2, 33): 't1', (2, 51): 't3*tau2', (0, 43): 't1', (0, 119): 'tau2*t3', (0, 131): 'tau3^-1', (0, 175): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 24): 't1^-1', (0, 156): 't1', (0, 33): 't1', (0, 153): 'tau1', (0, 120): 'tau2', (0, 165): 't1^-1', }