U-tiling: UQC2102
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1690 |
*22222 |
(2,6,4) |
{6,5} |
{4.3.4.4.3.4}{3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc9674
|
|
P4/mmm |
123 |
tetragonal |
{5,5} |
16 |
(2,6) |
G
|
False
|
|
sqc10157
|
|
I4122 |
98 |
tetragonal |
{5,6} |
16 |
(2,7) |
D
|
False
|
|
sqc4163
|
|
P4222 |
93 |
tetragonal |
{6,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {6,5} |
2D vertex symbol | {4.3.4.4.3.4}{3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.4:176:12 24 25 6 7 30 31 32 110 35 36 17 18 41 42 43 88 34 28 29 132 39 40 121 78 68 69 50 51 74 75 76 154 100 90 91 61 62 96 97 98 143 111 72 73 176 112 113 83 84 118 119 120 122 94 95 165 123 124 105 106 129 130 131 116 117 127 128 144 156 157 138 139 162 163 164 167 168 149 150 173 174 175 166 160 161 171 172,2 4 27 8 9 11 13 15 38 19 20 22 24 26 30 31 33 35 37 41 42 44 46 48 71 52 53 55 57 59 93 63 64 66 68 70 74 75 77 79 81 115 85 86 88 90 92 96 97 99 101 103 126 107 108 110 112 114 118 119 121 123 125 129 130 132 134 136 159 140 141 143 145 147 170 151 152 154 156 158 162 163 165 167 169 173 174 176,23 3 5 7 52 10 55 34 14 16 18 63 21 66 25 27 29 74 32 77 36 38 40 96 43 99 67 47 49 51 54 89 58 60 62 65 69 71 73 76 111 80 82 84 140 87 143 91 93 95 98 122 102 104 106 151 109 154 113 115 117 162 120 165 124 126 128 173 131 176 155 135 137 139 142 166 146 148 150 153 157 159 161 164 168 170 172 175:4 4 3 4 4 3 4 4 4 3 4 4 4 3 4 4 3 4 3 4 4 3 4 3,5 6 5 6 6 6 5 5 5 6 5 6 6 6 5 5> {(2, 175): 't1^-1', (1, 48): 't3*tau2', (0, 55): 't2', (2, 43): 't1', (0, 34): 't1', (0, 111): 'tau2*t3', (0, 166): 't1^-1*tau3^-1*t2', (0, 63): 't2*tau3^-1', (0, 30): 't1^-1', (2, 172): 't1^-1', (0, 151): 't3*tau2', (0, 13): 't1^-1', (0, 163): 't1*tau3*t2^-1', (1, 169): 'tau2^-1*t3^-1', (2, 40): 't1', (0, 117): 'tau2*t3', (2, 55): 't2*tau3^-1', (2, 22): 't1^-1', (0, 53): 't3*tau2', (0, 152): 't3*tau2', (0, 123): 'tau3^-1*t2', (0, 164): 't1', (2, 154): 't1*tau3*t2^-1', (0, 40): 't1', (0, 161): 'tau2*t3', (0, 128): 'tau3^-1*t2', (0, 172): 't1^-1*tau3^-1*t2', (1, 92): 'tau3*t2^-1', (0, 143): 'tau1', (0, 110): 'tau2', (1, 158): 't1*tau3*t2^-1', (1, 26): 't1^-1', (0, 121): 'tau3^-1', (0, 162): 't1*tau3*t2^-1', (0, 52): 't3*tau2', (0, 97): 'tau3*t2^-1', (2, 44): 't3*tau2', (2, 165): 'tau2^-1*t3^-1', (0, 155): 'tau2*t3', (0, 122): 'tau3^-1*t2', (0, 167): 't1^-1*tau3^-1*t2', (0, 31): 't1^-1', (0, 131): 't1', (0, 112): 'tau2*t3', (0, 156): 'tau2*t3', (0, 33): 't1', (0, 44): 't3', (0, 165): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', }