U-tiling: UQC220
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc211 |
*2224 |
(2,4,2) |
{4,4} |
{8.4.4.8}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5270
|
|
I4/mmm |
139 |
tetragonal |
{4,4} |
12 |
(2,4) |
G
|
False
|
|
sqc10844
|
|
I41/acd |
142 |
tetragonal |
{4,4} |
24 |
(2,4) |
D
|
False
|
|
sqc851
|
cdm
|
P42/mmc |
131 |
tetragonal |
{4,4} |
6 |
(2,4) |
Topological data
Vertex degrees | {4,4} |
2D vertex symbol | {8.4.4.8}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<15.2:192:67 3 70 71 30 79 9 82 83 36 85 15 88 89 42 103 21 106 107 54 91 27 94 95 109 33 112 113 121 39 124 125 115 45 118 119 144 145 51 148 149 97 57 100 101 168 151 63 154 155 180 69 102 127 75 130 131 192 81 120 87 132 93 138 99 105 156 111 162 117 123 174 129 163 135 166 167 157 141 160 161 147 186 153 159 165 187 171 190 191 181 177 184 185 183 189,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,7 14 15 5 18 20 21 11 24 19 17 23 43 38 39 29 42 55 50 51 35 54 61 41 62 63 47 66 73 53 74 75 59 78 65 79 86 87 71 90 77 104 105 83 108 103 89 115 122 123 95 126 109 128 129 101 132 107 146 147 113 150 152 153 119 156 151 125 145 131 157 170 171 137 174 163 176 177 143 180 149 155 182 183 161 186 188 189 167 192 181 173 187 179 185 191:4 8 4 8 4 8 4 8 4 4 4 4 4 4 4 4 4 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 122): 't3^-1', (2, 175): 't3', (2, 56): 't2^-1', (2, 109): 't2', (0, 129): 'tau3^-1', (0, 22): 't1^-1', (2, 61): 't3', (0, 154): 'tau2', (0, 180): 't2*tau3^-1*t1^-1*tau2', (0, 130): 'tau3^-1', (2, 55): 't2^-1', (0, 39): 'tau2^-1', (0, 144): 'tau3^-1', (2, 179): 't3', (0, 126): 'tau3^-1', (0, 171): 'tau2*t1^-1*tau3^-1*t2', (2, 113): 't2', (0, 185): 't2', (2, 169): 't3^-1', (2, 121): 't3^-1', (0, 40): 'tau2^-1', (2, 108): 't2', (2, 176): 't3', (0, 172): 'tau2*t1^-1*tau3^-1*t2', (2, 138): 'tau1^-1', (2, 47): 't3^-1', (0, 18): 't1^-1', (0, 183): 't2*tau3^-1*t1^-1*tau2', (0, 150): 'tau2', (0, 12): 't1^-1', (2, 156): 'tau1^-1', (2, 54): 't2^-1', (0, 147): 'tau3^-1', (0, 191): 't2^-1', (2, 110): 't2', (2, 24): 't3', (2, 44): 't3^-1', (0, 184): 't2*tau3^-1*t1^-1*tau2', (0, 16): 't1^-1', (2, 186): 'tau1*t3^-1', (0, 148): 'tau3^-1', (0, 15): 't1^-1', (2, 125): 't3^-1', (0, 36): 'tau2^-1', (2, 59): 't2^-1', (2, 180): 'tau1^-1*t3', (0, 21): 't1^-1', (2, 114): 't3^-1', (2, 170): 't3^-1', (0, 153): 'tau2', (2, 137): 't3', (0, 186): 't2^-1*tau3*t1*tau2^-1', }