U-tiling: UQC2296
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc205 |
*2224 |
(2,4,2) |
{4,8} |
{4.4.4.4}{4.4.4.4.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc10688
|
|
P4/mmm |
123 |
tetragonal |
{7,4} |
20 |
(2,6) |
G
|
False
|
|
sqc10879
|
|
I4122 |
98 |
tetragonal |
{8,4,4} |
20 |
(3,7) |
D
|
False
|
|
sqc4839
|
|
P4222 |
93 |
tetragonal |
{4,8} |
10 |
(2,6) |
Topological data
Vertex degrees | {8,4} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<15.2:192:109 4 5 114 115 32 33 22 23 24 85 16 17 90 91 44 45 133 28 29 138 139 46 47 48 121 40 41 126 127 157 52 53 162 163 80 81 94 95 96 145 64 65 150 151 104 105 118 119 120 181 76 77 186 187 130 131 132 88 89 128 129 169 100 101 174 175 142 143 144 112 113 140 141 124 125 136 137 148 149 176 177 166 167 168 160 161 188 189 172 173 190 191 192 184 185,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,49 3 5 7 9 11 36 61 15 17 19 21 23 48 73 27 29 31 33 35 97 39 41 43 45 47 51 53 55 57 59 84 63 65 67 69 71 108 75 77 79 81 83 145 87 89 91 93 95 132 99 101 103 105 107 157 111 113 115 117 119 144 169 123 125 127 129 131 181 135 137 139 141 143 147 149 151 153 155 180 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,8 4 8 4 4 4 4 4 4 8 4 4 8 4 4 4 4 4 4 4> {(0, 103): 'tau3*t2^-1', (2, 191): 't1^-1*tau3^-1*t2', (0, 117): 't2^-1', (0, 190): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 129): 'tau2', (0, 55): 't3*tau2', (0, 173): 't1', (0, 187): 'tau2^-1*t3^-1', (0, 166): 'tau1', (0, 137): 't1', (0, 104): 'tau3*t2^-1', (0, 118): 't2^-1', (0, 130): 'tau2', (0, 56): 't3*tau2', (0, 174): 't1', (0, 188): 'tau2^-1*t3^-1', (2, 179): 'tau2*t3', (0, 138): 't1', (0, 32): 't1^-1', (0, 47): 't1', (0, 143): 'tau3^-1', (2, 47): 't1', (0, 45): 't1', (2, 36): 't1', (0, 59): 't3', (0, 176): 't1*tau3*t2^-1', (0, 191): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 141): 'tau3^-1', (2, 95): 't3^-1*tau2^-1', (0, 46): 't1', (0, 167): 'tau1', (0, 31): 't1^-1', (0, 119): 't2^-1', (0, 131): 'tau2', (0, 57): 't3', (0, 175): 't1*tau3*t2^-1', (0, 142): 'tau3^-1', (0, 189): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 180): 't1^-1', (0, 168): 't1', (0, 165): 'tau1', (0, 132): 't1', (2, 119): 't2^-1*tau3', (0, 58): 't3', }