U-tiling: UQC2305
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1960 |
*22222 |
(2,6,4) |
{4,4} |
{4.8.4.4}{4.4.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11162
|
bbd
|
P4/mmm |
123 |
tetragonal |
{4,4} |
24 |
(2,6) |
G
|
False
|
|
sqc11161
|
|
I4122 |
98 |
tetragonal |
{4,4,4} |
24 |
(3,7) |
D
|
False
|
|
sqc5535
|
|
P4222 |
93 |
tetragonal |
{4,4} |
12 |
(2,6) |
Topological data
Vertex degrees | {4,4} |
2D vertex symbol | {4.8.4.4}{4.4.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.4:192:13 4 5 18 19 32 33 58 59 120 16 17 44 45 70 71 96 37 28 29 42 43 82 83 144 40 41 106 107 132 85 52 53 90 91 80 81 168 109 64 65 114 115 104 105 156 121 76 77 126 127 192 88 89 128 129 154 155 133 100 101 138 139 180 112 113 140 141 166 167 124 125 178 179 136 137 190 191 157 148 149 162 163 176 177 160 161 188 189 181 172 173 186 187 184 185,2 12 6 11 8 10 14 24 18 23 20 22 26 36 30 35 32 34 38 48 42 47 44 46 50 60 54 59 56 58 62 72 66 71 68 70 74 84 78 83 80 82 86 96 90 95 92 94 98 108 102 107 104 106 110 120 114 119 116 118 122 132 126 131 128 130 134 144 138 143 140 142 146 156 150 155 152 154 158 168 162 167 164 166 170 180 174 179 176 178 182 192 186 191 188 190,25 3 5 7 9 11 36 37 15 17 19 21 23 48 27 29 31 33 35 39 41 43 45 47 73 51 53 55 57 59 84 97 63 65 67 69 71 108 75 77 79 81 83 121 87 89 91 93 95 132 99 101 103 105 107 133 111 113 115 117 119 144 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 180 181 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191:4 8 4 4 8 4 4 8 8 4 4 4 4 4 4 4 4 4 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 179): 't1', (0, 41): 't1', (0, 190): 't1^-1', (2, 144): 't2*tau3^-1*t1^-1', (0, 140): 'tau3^-1*t2', (0, 48): 't3', (0, 125): 'tau2', (0, 137): 'tau3^-1', (0, 180): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 42): 't1', (0, 163): 't2^-1*tau3*t1', (0, 174): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (0, 188): 't1^-1*tau3^-1*t2', (0, 53): 't3', (0, 126): 'tau2', (2, 59): 't3*tau2', (0, 138): 'tau3^-1', (0, 185): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 161): 'tau1', (0, 128): 'tau2*t3', (0, 54): 't3', (0, 143): 't1', (0, 113): 't2^-1', (2, 60): 't2*tau3^-1', (0, 45): 't1', (0, 162): 'tau1', (0, 176): 'tau2*t3', (0, 114): 't2^-1', (2, 24): 't1^-1', (0, 46): 't1', (2, 179): 't1*tau3*t2^-1', (0, 60): 't2', (0, 43): 't1', (2, 107): 'tau3*t2^-1', (2, 191): 'tau2^-1*t3^-1', (0, 175): 'tau2*t3', (0, 36): 't1', (0, 189): 't1^-1', (0, 156): 'tau1', (2, 180): 'tau2^-1*t3^-1', (0, 127): 'tau2*t3', (0, 139): 'tau3^-1*t2', (2, 48): 't3*tau2', (0, 44): 't1', (0, 120): 'tau2', (2, 35): 't1^-1', (0, 132): 'tau3^-1', }