U-tiling: UQC25
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc60 |
*2223 |
(1,3,2) |
{4} |
{4.6.6.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11208
|
lta
|
Pm-3m |
221 |
cubic |
{4} |
24 |
(1,3) |
G
|
False
|
|
sqc11205
|
crt
|
I4132 |
214 |
cubic |
{4} |
24 |
(1,3) |
D
|
False
|
|
sqc5516
|
|
P4232 |
208 |
cubic |
{4} |
12 |
(1,3) |
Topological data
Vertex degrees | {4} |
2D vertex symbol | {4.6.6.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.1:192:21 18 19 8 29 26 27 37 34 35 16 61 58 59 41 48 42 43 56 65 72 66 67 80 81 88 82 83 96 100 85 70 71 101 78 79 108 173 74 75 109 116 110 111 124 128 113 129 136 181 140 114 115 141 122 123 148 185 118 119 137 134 135 182 183 152 145 126 127 156 157 164 189 153 174 175 168 161 162 163 190 191 172 154 155 169 166 167 186 187 180 177 178 179 184 192,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192,9 3 12 13 7 16 11 15 49 19 52 37 23 40 73 27 76 61 31 64 89 35 92 39 101 43 104 105 47 108 51 93 55 96 117 59 120 63 129 67 132 133 71 136 75 121 79 124 141 83 144 145 87 148 91 95 149 99 152 103 107 157 111 160 161 115 164 119 123 165 127 168 131 135 169 139 172 143 147 151 177 155 180 159 163 167 171 185 175 188 179 189 183 192 187 191:4 6 4 4 6 4 6 6 6 4 4 4 6 4 4 4 6 4 6 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 155): 't2^-1', (0, 179): 't2*tau3^-1*t1^-1', (0, 117): 'tau2', (0, 190): 't2^-1*tau3*t1', (0, 140): 't1^-1', (0, 125): 't2', (2, 32): 't1^-1', (2, 152): 't2^-1', (0, 118): 'tau2', (0, 56): 't1', (0, 177): 'tau1^-1*t3', (0, 188): 't2^-1', (2, 111): 't1^-1', (0, 53): 't3', (0, 126): 't2', (0, 171): 'tau2', (0, 185): 'tau2^-1', (0, 152): 't2^-1', (2, 187): 't3', (0, 178): 'tau1^-1*t3', (2, 108): 't1^-1', (0, 54): 't3', (0, 172): 't3^-1', (0, 186): 'tau2^-1', (2, 184): 't3', (0, 183): 'tau1', (0, 150): 'tau1', (0, 121): 'tau3', (2, 123): 't2', (0, 191): 'tau1*t3^-1', (0, 35): 't1^-1', (2, 99): 't3^-1', (0, 155): 'tau3^-1', (0, 122): 'tau3', (0, 31): 't2', (2, 120): 't2', (0, 43): 't3', (0, 57): 't1', (0, 165): 'tau1^-1', (0, 189): 't2^-1*tau3*t1', (2, 96): 't3^-1', (0, 168): 't3^-1', (0, 139): 'tau2', (2, 35): 't1^-1', (0, 58): 't1', }