U-tiling: UQC2524
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1917 |
*22222 |
(2,5,5) |
{5,4} |
{4.6.3.4.4}{3.6.3.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5464
|
|
P4/mmm |
123 |
tetragonal |
{5,4} |
10 |
(2,4) |
G
|
False
|
|
sqc11089
|
|
I4122 |
98 |
tetragonal |
{4,5,5} |
20 |
(3,6) |
D
|
False
|
|
sqc5455
|
|
P4222 |
93 |
tetragonal |
{5,4} |
10 |
(2,5) |
Topological data
Vertex degrees | {4,5} |
2D vertex symbol | {4.6.3.4.4}{3.6.3.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<16.5:192:3 4 17 18 31 32 117 118 59 60 15 16 43 44 93 94 71 72 27 28 41 42 141 142 83 84 39 40 129 130 107 108 51 52 89 90 79 80 165 166 63 64 113 114 103 104 153 154 75 76 125 126 189 190 87 88 127 128 155 156 99 100 137 138 177 178 111 112 139 140 167 168 123 124 179 180 135 136 191 192 147 148 161 162 175 176 159 160 187 188 171 172 185 186 183 184,13 26 5 12 7 9 11 38 17 24 19 21 23 37 29 36 31 33 35 41 48 43 45 47 85 74 53 60 55 57 59 109 98 65 72 67 69 71 121 77 84 79 81 83 122 89 96 91 93 95 133 101 108 103 105 107 134 113 120 115 117 119 125 132 127 129 131 137 144 139 141 143 157 170 149 156 151 153 155 182 161 168 163 165 167 181 173 180 175 177 179 185 192 187 189 191,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192:3 6 4 4 4 6 4 4 3 4 4 3 4 4 3 4 4 3 6 3 6 3 4 3,4 5 5 5 5 4 5 4 5 5 5 5 5 5 5 4 5 5 5 5> {(0, 103): 'tau3*t2^-1', (1, 108): 't2^-1', (0, 190): 't1^-1', (0, 55): 't3*tau2', (1, 37): 't1', (0, 140): 't1', (0, 187): 'tau2^-1*t3^-1', (0, 125): 'tau2', (0, 41): 't1', (0, 137): 'tau3^-1', (0, 30): 't1^-1', (1, 169): 'tau2*t3', (0, 174): 't1*tau3*t2^-1', (0, 177): 't1', (0, 53): 't3', (0, 185): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 47): 't1', (1, 84): 't3^-1', (1, 181): 't1^-1*tau3^-1*t2', (1, 120): 'tau2', (0, 102): 'tau3*t2^-1', (1, 109): 't2^-1*tau3', (0, 161): 'tau1', (0, 54): 't3*tau2', (0, 40): 't1', (1, 96): 'tau3', (0, 113): 't2^-1', (0, 186): 'tau2^-1*t3^-1', (0, 124): 'tau2', (0, 136): 'tau3^-1', (0, 176): 't1', (0, 191): 't1^-1', (0, 52): 't3', (1, 36): 't1', (1, 156): 'tau1', (0, 184): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (0, 46): 't1', (1, 121): 'tau2*t3', (0, 31): 't1^-1', (0, 160): 'tau1', (0, 175): 't1*tau3*t2^-1', (0, 112): 't2^-1', (0, 33): 't1^-1', (1, 180): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', }