U-tiling: UQC2529
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1920 |
*2244 |
(2,5,5) |
{5,8} |
{4.3.3.8.4}{3.3.3.3.3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10821
|
|
P4/nmm |
129 |
tetragonal |
{8,5} |
18 |
(2,5) |
G
|
False
|
|
sqc10824
|
|
I41/a |
88 |
tetragonal |
{8,5,5} |
18 |
(3,6) |
D
|
False
|
|
sqc10889
|
|
I41/amd |
141 |
tetragonal |
{8,5} |
18 |
(2,5) |
Topological data
Vertex degrees | {8,5} |
2D vertex symbol | {4.3.3.8.4}{3.3.3.3.3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<39.1:192:3 4 77 78 19 20 81 82 35 36 15 16 89 90 93 94 47 48 27 28 101 102 55 56 105 106 39 40 125 126 67 68 129 130 51 52 137 138 141 142 167 168 63 64 113 114 117 118 191 192 75 76 91 92 119 120 87 88 143 144 99 100 139 140 155 156 111 112 127 128 123 124 179 180 135 136 147 148 185 186 175 176 189 190 159 160 173 174 187 188 177 178 171 172 183 184,73 26 5 12 7 9 11 85 38 17 24 19 21 23 97 29 36 31 33 35 121 41 48 43 45 47 133 158 53 60 55 57 59 109 182 65 72 67 69 71 110 77 84 79 81 83 134 89 96 91 93 95 146 101 108 103 105 107 113 120 115 117 119 170 125 132 127 129 131 137 144 139 141 143 181 149 156 151 153 155 169 161 168 163 165 167 173 180 175 177 179 185 192 187 189 191,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192:3 3 4 4 8 3 3 8 3 4 4 3 4 4 3 3 3 3 3 3 3 3 3 4 4 3,8 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5> {(0, 16): 't1^-1', (0, 29): 'tau2^-1*t3^-1', (1, 60): 't2^-1*tau3', (0, 41): 'tau3*t2^-1', (0, 139): 't3^-1', (0, 53): 't3^-1*tau2^-1', (0, 126): 't2', (0, 43): 't2', (0, 65): 't2^-1*tau3', (0, 138): 't3^-1', (0, 55): 't3^-1', (0, 173): 't2*tau3^-1*t1^-1*tau2*t3', (0, 185): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 175): 'tau1^-1', (0, 5): 't1^-1', (0, 187): 'tau1', (0, 17): 't1^-1', (1, 120): 't2*tau3^-1', (0, 28): 'tau2^-1*t3^-1', (0, 127): 't2', (0, 40): 'tau3*t2^-1', (1, 48): 't3^-1*tau2^-1', (1, 84): 't1', (0, 52): 't3^-1*tau2^-1', (0, 42): 't2', (1, 168): 't2*tau3^-1*t1^-1*tau2*t3', (0, 64): 't2^-1*tau3', (1, 72): 't1', (0, 54): 't3^-1', (0, 172): 't2*tau3^-1*t1^-1*tau2*t3', (0, 184): 't2^-1*tau3*t1*tau2^-1*t3^-1', (1, 96): 't3*tau2', (0, 174): 'tau1^-1', (0, 4): 't1^-1', (1, 180): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 186): 'tau1', }