U-tiling: UQC2624
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1972 |
*2323 |
(2,5,5) |
{6,3} |
{3.4.12.3.12.4}{12.4.3} |
s-nets
No items to display.
Topological data
Vertex degrees | {6,3} |
2D vertex symbol | {3.4.12.3.12.4}{12.4.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<26.1:288:85 86 27 28 7 8 21 22 47 48 181 182 75 76 19 20 71 72 133 134 31 32 57 58 155 156 169 170 159 160 43 44 69 70 241 242 99 100 55 56 227 228 217 218 195 196 67 68 229 230 79 80 105 106 263 264 135 136 91 92 117 118 131 132 121 122 103 104 179 180 265 266 255 256 115 116 203 204 243 244 127 128 201 202 139 140 213 214 239 240 253 254 267 268 151 152 225 226 205 206 163 164 249 250 275 276 207 208 175 176 261 262 231 232 187 188 273 274 251 252 277 278 199 200 211 212 287 288 279 280 223 224 235 236 285 286 247 248 259 260 271 272 283 284,37 3 5 42 9 12 11 61 15 17 66 21 24 23 145 27 29 150 33 36 35 39 41 45 48 47 217 51 53 222 57 60 59 63 65 69 72 71 253 75 77 258 81 84 83 121 87 89 126 93 96 95 169 99 101 174 105 108 107 193 111 113 198 117 120 119 123 125 129 132 131 229 135 137 234 141 144 143 147 149 153 156 155 265 159 161 270 165 168 167 171 173 177 180 179 241 183 185 246 189 192 191 195 197 201 204 203 277 207 209 282 213 216 215 219 221 225 228 227 231 233 237 240 239 243 245 249 252 251 255 257 261 264 263 267 269 273 276 275 279 281 285 288 287,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288:3 4 12 3 4 3 4 3 3 3 4 4 12 4 3 4 3 4 12 3 4 3 3 4 3 3 4 12 3 4 3 3,6 3 6 3 6 3 3 6 3 3 6 3 6 3 6 3 6 3 3 6 3 3 6 3 3 6 3 3 6 3 3 3 3 3 3 3> {(1, 108): 'tau3^-1*t1^-1', (0, 117): 'tau3^-1', (0, 190): 't3', (0, 202): 't1*tau3', (0, 216): 't3^-1', (1, 161): 'tau2^-1*t3^-1*tau1', (0, 166): 'tau2^-1*t3^-1*tau1', (1, 204): 't2', (0, 63): 'tau2^-1', (0, 192): 'tau2*t3*tau1^-1', (0, 130): 't1', (1, 125): 't1', (0, 144): 't2', (0, 188): 'tau1', (0, 171): 'tau3^-1', (0, 109): 't2^-1', (0, 214): 't2', (0, 164): 'tau2^-1', (1, 120): 't1', (1, 156): 'tau2^-1*t3^-1*tau1', (0, 116): 'tau3^-1', (1, 228): 't2^-1', (1, 233): 't2^-1', (0, 143): 't2', (0, 219): 'tau1^-1', (0, 157): 't1^-1*tau3^-1', (0, 169): 't1', (1, 245): 't3^-1', (0, 253): 't2^-1', (0, 191): 't3', (0, 203): 't1*tau3', (1, 113): 'tau3^-1*t1^-1', (0, 170): 'tau3^-1', (0, 108): 't2^-1', (0, 217): 't3^-1', (0, 167): 'tau2^-1*t3^-1*tau1', (1, 240): 't3^-1', (1, 209): 't2', (0, 193): 'tau2*t3*tau1^-1', (0, 131): 't1', (0, 204): 'tau3*t1', (0, 142): 't2', (0, 218): 'tau1^-1', (0, 189): 'tau1', (0, 168): 't1', (0, 215): 't2', (0, 194): 'tau2', (0, 165): 'tau2^-1', }