U-tiling: UQC2636
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1979 |
*2224 |
(2,5,5) |
{6,3} |
{4.4.8.3.8.4}{8.4.3} |
s-nets
No items to display.
Topological data
Vertex degrees | {6,3} |
2D vertex symbol | {4.4.8.3.8.4}{8.4.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<55.2:384:133 134 15 16 7 8 33 34 59 60 157 158 19 20 45 46 71 72 169 170 39 40 31 32 83 84 205 206 43 44 107 108 181 182 87 88 55 56 81 82 217 218 111 112 67 68 105 106 241 242 123 124 79 80 229 230 91 92 129 130 287 288 289 290 147 148 103 104 193 194 115 116 153 154 335 336 301 302 127 128 359 360 159 160 139 140 177 178 203 204 253 254 151 152 383 384 163 164 213 214 239 240 207 208 175 176 263 264 231 232 187 188 249 250 275 276 219 220 199 200 261 262 211 212 311 312 223 224 297 298 323 324 235 236 309 310 303 304 247 248 347 348 291 292 259 260 325 326 315 316 271 272 345 346 313 314 327 328 283 284 357 358 295 296 371 372 307 308 319 320 369 370 331 332 381 382 373 374 363 364 343 344 361 362 375 376 355 356 367 368 379 380,49 3 5 54 9 12 11 61 15 17 66 21 24 23 73 27 29 78 33 36 35 97 39 41 102 45 48 47 51 53 57 60 59 63 65 69 72 71 75 77 81 84 83 277 87 89 282 93 96 95 99 101 105 108 107 325 111 113 330 117 120 119 349 123 125 354 129 132 131 193 135 137 198 141 144 143 373 147 149 378 153 156 155 229 159 161 234 165 168 167 253 171 173 258 177 180 179 265 183 185 270 189 192 191 195 197 201 204 203 301 207 209 306 213 216 215 313 219 221 318 225 228 227 231 233 237 240 239 337 243 245 342 249 252 251 255 257 261 264 263 267 269 273 276 275 279 281 285 288 287 361 291 293 366 297 300 299 303 305 309 312 311 315 317 321 324 323 327 329 333 336 335 339 341 345 348 347 351 353 357 360 359 363 365 369 372 371 375 377 381 384 383,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380 382 384:4 4 8 3 4 4 3 4 4 4 3 4 3 4 8 4 8 4 3 4 4 3 4 3 8 3 4 3 3 4 3 8 3 4 8 3 3 4 3 4 8 8 3 4,6 3 6 3 6 3 6 3 3 3 3 6 3 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 3 6 3 6 3 3 6 3 3 3 3 6 3 3 3 3 3 3 3 3> {(1, 149): 't2', (0, 285): 't3^-1', (0, 373): 't2^-1*tau3*t1*tau2^-1', (0, 129): 't3', (0, 96): 'tau3', (0, 278): 'tau1^-1', (0, 154): 't2', (0, 63): 't2', (0, 360): 't2*tau3^-1*t1^-1*tau2', (1, 144): 't2', (0, 225): 't2', (0, 298): 't2^-1', (0, 374): 'tau1*t3^-1', (0, 144): 'tau3', (0, 188): 't3', (0, 152): 't2', (0, 273): 't3', (0, 240): 'tau2', (0, 284): 't3^-1', (1, 365): 't2', (0, 372): 't2^-1*tau3*t1*tau2^-1', (0, 128): 't3', (0, 205): 't1', (0, 219): 't2', (0, 51): 't3', (0, 169): 't1', (0, 62): 't2', (0, 363): 'tau1^-1*t3', (0, 183): 't3', (0, 224): 't2', (1, 360): 't2', (0, 121): 'tau2^-1', (0, 315): 'tau1^-1', (0, 97): 'tau3', (0, 279): 'tau1^-1', (0, 155): 't2', (0, 272): 't3', (0, 361): 't2*tau3^-1*t1^-1*tau2', (0, 299): 't2^-1', (0, 375): 'tau1*t3^-1', (0, 204): 't1', (0, 145): 'tau3', (0, 218): 't2', (0, 189): 't3', (0, 50): 't3', (0, 168): 't1', (0, 362): 'tau1^-1*t3', (0, 182): 't3', (0, 153): 't2', (0, 120): 'tau2^-1', (0, 241): 'tau2', (0, 314): 'tau1^-1', }