U-tiling: UQC2666
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2009 |
*2244 |
(2,5,5) |
{3,6} |
{4.8.4}{4.4.4.8.4.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc10778
|
|
P4/nmm |
129 |
tetragonal |
{6,3} |
24 |
(2,5) |
G
|
False
|
|
sqc10877
|
|
I41/a |
88 |
tetragonal |
{6,3,3} |
24 |
(3,6) |
D
|
False
|
|
sqc10768
|
|
I41/amd |
141 |
tetragonal |
{6,3} |
24 |
(2,5) |
Topological data
Vertex degrees | {6,3} |
2D vertex symbol | {4.8.4}{4.4.4.8.4.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<52.1:192:73 74 5 6 79 80 21 22 83 84 85 86 17 18 91 92 95 96 97 98 29 30 103 104 57 58 107 108 121 122 41 42 127 128 69 70 131 132 133 134 53 54 139 140 143 144 109 110 65 66 115 116 119 120 77 78 93 94 89 90 101 102 141 142 113 114 129 130 125 126 137 138 181 182 149 150 187 188 177 178 191 192 169 170 161 162 175 176 189 190 179 180 173 174 185 186,25 3 11 7 10 9 36 37 15 23 19 22 21 48 27 35 31 34 33 39 47 43 46 45 157 51 59 55 58 57 168 181 63 71 67 70 69 192 109 75 83 79 82 81 120 133 87 95 91 94 93 144 145 99 107 103 106 105 156 111 119 115 118 117 169 123 131 127 130 129 180 135 143 139 142 141 147 155 151 154 153 159 167 163 166 165 171 179 175 178 177 183 191 187 190 189,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192:4 4 8 4 4 4 4 4 4 8 4 4 8 4 4 4 4 8 4 4,6 3 6 3 3 3 6 3 6 3 6 3 6 3 6 3 3 6 3 3 3 3 3 3> {(0, 129): 't2', (0, 140): 't3^-1', (0, 187): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 19): 't1^-1', (0, 30): 'tau2^-1*t3^-1', (0, 180): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 42): 'tau3*t2^-1', (0, 13): 't1^-1', (0, 56): 't3^-1', (0, 174): 't2*tau3^-1*t1^-1*tau2*t3', (0, 177): 'tau1^-1', (0, 6): 't1^-1', (0, 115): 'tau3^-1*t2', (0, 188): 'tau1', (0, 138): 'tau2*t3', (0, 61): 't2^-1*tau3', (0, 128): 't2', (0, 25): 'tau2^-1*t3^-1', (0, 37): 'tau3*t2^-1', (0, 186): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 169): 't2*tau3^-1*t1^-1*tau2*t3', (0, 18): 't1^-1', (0, 1): 't1^-1', (0, 45): 't2', (0, 12): 't1^-1', (0, 133): 'tau2*t3', (0, 176): 'tau1^-1', (0, 114): 'tau3^-1*t2', (0, 141): 't3^-1', (0, 60): 't2^-1*tau3', (0, 31): 'tau2^-1*t3^-1', (0, 181): 't2^-1*tau3*t1*tau2^-1*t3^-1', (0, 43): 'tau3*t2^-1', (0, 57): 't3^-1', (0, 175): 't2*tau3^-1*t1^-1*tau2*t3', (0, 24): 'tau2^-1*t3^-1', (0, 36): 'tau3*t2^-1', (0, 7): 't1^-1', (0, 189): 'tau1', (0, 168): 't2*tau3^-1*t1^-1*tau2*t3', (0, 139): 'tau2*t3', (0, 0): 't1^-1', (0, 44): 't2', (0, 132): 'tau2*t3', }