U-tiling: UQC2705
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2130 |
*22222 |
(2,6,5) |
{5,3} |
{4.4.6.4.4}{6.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11556
|
|
P4/mmm |
123 |
tetragonal |
{3,5} |
24 |
(2,6) |
G
|
False
|
|
sqc11553
|
|
I4122 |
98 |
tetragonal |
{3,5,5} |
24 |
(3,7) |
D
|
False
|
|
sqc6023
|
|
P4222 |
93 |
tetragonal |
{3,5} |
12 |
(2,6) |
Topological data
Vertex degrees | {3,5} |
2D vertex symbol | {4.4.6.4.4}{6.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<17.1:208:53 4 5 58 59 125 126 36 37 25 26 66 17 18 71 72 99 100 49 50 79 30 31 84 85 151 152 51 52 105 43 44 110 111 138 139 56 57 177 178 88 89 103 104 69 70 164 165 114 115 129 130 82 83 203 204 142 143 157 95 96 162 163 140 141 108 109 190 191 155 156 170 121 122 175 176 153 154 183 134 135 188 189 196 147 148 201 202 160 161 192 193 181 182 173 174 205 206 186 187 207 208 199 200,2 29 6 13 8 10 12 15 42 19 26 21 23 25 28 32 39 34 36 38 41 45 52 47 49 51 54 81 58 65 60 62 64 67 107 71 78 73 75 77 80 84 91 86 88 90 93 133 97 104 99 101 103 106 110 117 112 114 116 119 146 123 130 125 127 129 132 136 143 138 140 142 145 149 156 151 153 155 158 185 162 169 164 166 168 171 198 175 182 177 179 181 184 188 195 190 192 194 197 201 208 203 205 207,27 3 5 7 9 11 13 40 16 18 20 22 24 26 29 31 33 35 37 39 42 44 46 48 50 52 79 55 57 59 61 63 65 105 68 70 72 74 76 78 81 83 85 87 89 91 131 94 96 98 100 102 104 107 109 111 113 115 117 144 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 183 159 161 163 165 167 169 196 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 6 4 4 4 4 4 4 4 4 4 4 6 4 4 6 4 4 4 4 4 4 6 4,3 5 3 5 5 5 3 5 3 5 5 3 5 5 3 5 5 5 3 5 3 5 5 5> {(0, 103): 't3^-1', (0, 179): 't3*tau2', (0, 190): 't1', (0, 129): 't2^-1', (0, 154): 'tau3^-1', (2, 182): 'tau2*t3', (0, 166): 't2*tau3^-1*t1^-1', (0, 63): 't3', (0, 180): 'tau1', (0, 151): 't1', (0, 207): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 197): 't1^-1*tau3^-1*t2', (0, 39): 't1', (2, 91): 't3^-1*tau2^-1', (2, 169): 't2^-1*tau3*t1', (0, 61): 't3*tau2', (0, 178): 't3*tau2', (0, 149): 't1', (0, 50): 't1', (2, 39): 't1', (0, 128): 't2^-1', (0, 143): 't1', (0, 113): 'tau3*t2^-1', (0, 51): 't1', (0, 62): 't3*tau2', (0, 45): 't1', (0, 150): 't1', (0, 206): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (1, 184): 'tau2*t3', (2, 143): 'tau3^-1*t2', (0, 114): 'tau3*t2^-1', (0, 191): 't1*tau3*t2^-1', (0, 141): 'tau2', (0, 35): 't1^-1', (1, 41): 't1', (0, 155): 'tau3^-1', (0, 181): 'tau1', (0, 148): 't1', (1, 93): 't3^-1*tau2^-1', (0, 142): 'tau2', (0, 36): 't1^-1', (0, 189): 't1', (1, 119): 't2^-1*tau3', (0, 44): 't1', }