U-tiling: UQC277
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc47 |
*248 |
(2,2,1) |
{16,4} |
{3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc544
|
|
P4/mmm |
123 |
tetragonal |
{14,4} |
3 |
(2,3) |
G
|
False
|
|
sqc10714
|
|
I41/acd |
142 |
tetragonal |
{16,4} |
12 |
(2,4) |
D
|
False
|
|
sqc5105
|
|
P42/nnm |
134 |
tetragonal |
{4,16} |
6 |
(2,3) |
Topological data
Vertex degrees | {16,4} |
2D vertex symbol | {3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<24.1:192:13 3 5 12 19 9 11 15 17 24 21 23 37 27 29 48 49 33 35 60 39 41 66 61 45 47 51 53 78 73 57 59 63 65 85 69 71 84 75 77 103 81 83 87 89 108 121 93 95 120 127 99 101 114 105 107 145 111 113 151 117 119 123 125 156 129 131 150 169 135 137 162 175 141 143 168 147 149 153 155 181 159 161 187 165 167 171 173 186 177 179 192 183 185 189 191,2 15 6 11 8 21 12 14 18 23 20 24 26 39 30 47 32 51 36 59 38 42 65 44 63 48 50 54 77 56 75 60 62 66 68 87 72 83 74 78 80 105 84 86 90 107 92 123 96 119 98 129 102 113 104 108 110 147 114 116 153 120 122 126 155 128 132 149 134 171 138 161 140 177 144 167 146 150 152 156 158 183 162 164 189 168 170 174 185 176 180 191 182 186 188 192,25 4 5 72 31 10 11 84 37 16 17 90 49 22 23 108 28 29 96 34 35 114 40 41 126 139 46 47 120 52 53 150 163 58 59 102 175 64 65 156 97 70 71 187 76 77 132 115 82 83 127 88 89 133 94 95 100 101 151 106 107 157 112 113 118 119 169 124 125 130 131 136 137 168 142 143 162 181 148 149 154 155 160 161 166 167 172 173 192 178 179 186 184 185 190 191:3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,16 4 16 16 16 4 4 4 4 4 4 4> {(0, 59): 't2^-1', (0, 185): 'tau1^-1*t3', (2, 185): 't2*tau3^-1*t1^-1*tau2', (0, 60): 't3', (1, 56): 't2^-1', (2, 180): 't2', (2, 53): 'tau3', (0, 54): 't2^-1', (2, 173): 'tau2*t1^-1*tau3^-1*t2', (0, 168): 't3^-1', (0, 174): 't3', (1, 110): 't2', (0, 161): 'tau1^-1', (1, 100): 't2^-1', (0, 191): 'tau1*t3^-1', (1, 92): 't3', (1, 94): 't3', (2, 155): 'tau2', (0, 144): 't2^-1', (2, 23): 't1^-1', (2, 17): 't1^-1', (0, 167): 'tau1', (1, 184): 'tau1^-1*t3', (2, 125): 'tau2', (0, 113): 't2', (1, 62): 't3', (1, 176): 't3', (2, 186): 't2^-1', (1, 178): 't3*tau1^-1', (0, 119): 't3^-1', (1, 170): 't3^-1', (1, 160): 'tau1^-1', (1, 34): 't2', (1, 166): 'tau1', (0, 90): 't3', (1, 28): 't3', (0, 29): 't3', (2, 77): 'tau3'}