U-tiling: UQC2819
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2167 |
*2244 |
(2,6,5) |
{4,5} |
{4.4.4.8}{4.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11568
|
|
P42/mmc |
131 |
tetragonal |
{5,4} |
24 |
(2,6) |
G
|
False
|
|
sqc11570
|
|
I-42d |
122 |
tetragonal |
{5,4,4} |
24 |
(3,7) |
D
|
False
|
|
sqc6056
|
|
P-42m |
111 |
tetragonal |
{5,4} |
12 |
(2,6) |
Topological data
Vertex degrees | {5,4} |
2D vertex symbol | {4.4.4.8}{4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.1:208:105 4 5 110 111 21 22 36 37 38 39 118 17 18 123 124 49 50 51 52 131 30 31 136 137 60 61 144 43 44 149 150 73 74 157 56 57 162 163 88 89 90 91 170 69 70 175 176 101 102 103 104 183 82 83 188 189 99 100 196 95 96 201 202 108 109 125 126 140 141 142 143 121 122 153 154 155 156 134 135 164 165 147 148 177 178 160 161 192 193 194 195 173 174 205 206 207 208 186 187 203 204 199 200,2 12 6 11 8 10 91 15 25 19 24 21 23 104 28 38 32 37 34 36 52 41 51 45 50 47 49 54 64 58 63 60 62 78 67 77 71 76 73 75 80 90 84 89 86 88 93 103 97 102 99 101 106 116 110 115 112 114 195 119 129 123 128 125 127 208 132 142 136 141 138 140 156 145 155 149 154 151 153 158 168 162 167 164 166 182 171 181 175 180 177 179 184 194 188 193 190 192 197 207 201 206 203 205,79 3 5 7 9 11 13 92 16 18 20 22 24 26 40 29 31 33 35 37 39 42 44 46 48 50 52 66 55 57 59 61 63 65 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 183 107 109 111 113 115 117 196 120 122 124 126 128 130 144 133 135 137 139 141 143 146 148 150 152 154 156 170 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 4,5 4 5 4 5 4 4 5 4 4 4 4 5 4 5 4 5 4 4 5 4 4 4 4> {(0, 167): 'tau1', (0, 103): 't3^-1*tau2^-1*t3^-1', (0, 126): 'tau3', (0, 179): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (2, 117): 't1^-1*tau2*t3', (0, 139): 't2^-1', (0, 181): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 62): 't3', (0, 127): 'tau3', (1, 207): 't3^-1*tau2^-1*t1', (0, 150): 't1*tau2^-1*t3^-1', (0, 140): 't2^-1', (1, 103): 't3^-1*tau2^-1*t1', (0, 47): 't1*tau2^-1*t3^-1', (0, 24): 't1^-1', (0, 90): 't3^-1', (0, 142): 't2^-1', (0, 100): 't3^-1*tau2^-1*t3^-1', (0, 154): 'tau3^-1', (0, 48): 't1', (0, 61): 't3', (0, 166): 'tau1', (0, 178): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 63): 't3', (0, 168): 'tau1', (2, 13): 't1^-1*tau2*t3', (0, 180): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 191): 'tau1^-1', (0, 141): 't2^-1', (0, 49): 't1', (0, 25): 't1^-1', (0, 101): 't3^-1*tau2^-1*t3^-1', (0, 46): 't1*tau2^-1*t3^-1', (0, 155): 'tau3^-1', (0, 177): 't3*tau2*t1^-1', (0, 76): 't3*tau2*t3', }