U-tiling: UQC2820
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2167 |
*2244 |
(2,6,5) |
{4,5} |
{4.4.4.8}{4.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11557
|
|
P4/nmm |
129 |
tetragonal |
{5,4} |
24 |
(2,6) |
G
|
False
|
|
sqc11551
|
|
I41/a |
88 |
tetragonal |
{5,4,4} |
24 |
(3,7) |
D
|
False
|
|
sqc11548
|
|
I41/amd |
141 |
tetragonal |
{5,4} |
24 |
(2,6) |
Topological data
Vertex degrees | {5,4} |
2D vertex symbol | {4.4.4.8}{4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.1:208:14 4 5 19 20 86 87 36 37 38 39 17 18 99 100 49 50 51 52 53 30 31 58 59 112 113 66 43 44 71 72 138 139 56 57 151 152 179 180 181 182 69 70 125 126 205 206 207 208 92 82 83 97 98 127 128 129 130 95 96 153 154 155 156 144 108 109 149 150 166 167 168 169 131 121 122 136 137 134 135 192 193 194 195 147 148 183 160 161 188 189 203 204 196 173 174 201 202 190 191 186 187 199 200,2 12 6 11 8 10 91 15 25 19 24 21 23 104 28 38 32 37 34 36 117 41 51 45 50 47 49 143 54 64 58 63 60 62 156 67 77 71 76 73 75 130 80 90 84 89 86 88 93 103 97 102 99 101 106 116 110 115 112 114 119 129 123 128 125 127 132 142 136 141 138 140 145 155 149 154 151 153 158 168 162 167 164 166 208 171 181 175 180 177 179 195 184 194 188 193 190 192 197 207 201 206 203 205,79 3 5 7 9 11 13 92 16 18 20 22 24 26 105 29 31 33 35 37 39 131 42 44 46 48 50 52 144 55 57 59 61 63 65 118 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 196 159 161 163 165 167 169 183 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 4 8 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,5 4 5 4 5 4 5 4 5 4 5 4 4 4 4 4 4 4 5 4 5 4 4 4> {(0, 39): 't2', (0, 60): 't3^-1*tau2^-1', (0, 169): 'tau1^-1', (0, 8): 't1^-1', (0, 190): 't2*tau3^-1*t1^-1*tau2*t3', (0, 20): 't1^-1', (0, 175): 'tau1^-1', (0, 45): 't2', (0, 109): 't3', (0, 161): 'tau1', (0, 57): 't3^-1', (0, 34): 'tau2^-1*t3^-1', (0, 47): 'tau3*t2^-1', (0, 174): 'tau1^-1', (0, 59): 't3^-1*tau2^-1', (0, 164): 't3*tau2*t1^-1*tau3^-1*t2', (0, 188): 'tau1^-1', (0, 7): 't1^-1', (0, 189): 't2*tau3^-1*t1^-1*tau2*t3', (0, 110): 't3', (0, 122): 't2^-1', (0, 73): 't2^-1*tau3', (0, 21): 't1^-1', (0, 52): 't3^-1', (0, 33): 'tau2^-1*t3^-1', (0, 72): 't2^-1*tau3', (0, 182): 'tau1^-1', (0, 163): 't3*tau2*t1^-1*tau3^-1*t2', (0, 44): 't2', (0, 136): 't2', (0, 143): 't3^-1', (0, 130): 't2', (0, 46): 'tau3*t2^-1', (0, 58): 't3^-1', }