U-tiling: UQC2877
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2181 |
*2244 |
(2,6,5) |
{7,3} |
{4.8.4.3.4.8.4}{4.8.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc11039
|
|
P42/mmc |
131 |
tetragonal |
{6,3} |
24 |
(2,6) |
G
|
False
|
|
sqc11345
|
|
I-42d |
122 |
tetragonal |
{7,3,3} |
24 |
(3,7) |
D
|
False
|
|
sqc5769
|
|
P4/mmm |
123 |
tetragonal |
{7,3} |
12 |
(2,6) |
Topological data
Vertex degrees | {7,3} |
2D vertex symbol | {4.8.4.3.4.8.4}{4.8.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<57.1:208:105 15 16 30 31 8 9 36 37 90 91 118 43 44 21 22 49 50 103 104 131 54 55 34 35 51 52 144 67 68 47 48 157 82 83 60 61 88 89 77 78 170 95 96 73 74 101 102 183 93 94 86 87 196 99 100 119 120 134 135 112 113 140 141 194 195 147 148 125 126 153 154 207 208 158 159 138 139 155 156 171 172 151 152 186 187 164 165 192 193 181 182 199 200 177 178 205 206 197 198 190 191 203 204,2 4 6 85 10 13 12 15 17 19 98 23 26 25 28 30 32 46 36 39 38 41 43 45 49 52 51 54 56 58 72 62 65 64 67 69 71 75 78 77 80 82 84 88 91 90 93 95 97 101 104 103 106 108 110 189 114 117 116 119 121 123 202 127 130 129 132 134 136 150 140 143 142 145 147 149 153 156 155 158 160 162 176 166 169 168 171 173 175 179 182 181 184 186 188 192 195 194 197 199 201 205 208 207,79 3 5 7 9 11 13 92 16 18 20 22 24 26 40 29 31 33 35 37 39 42 44 46 48 50 52 66 55 57 59 61 63 65 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 183 107 109 111 113 115 117 196 120 122 124 126 128 130 144 133 135 137 139 141 143 146 148 150 152 154 156 170 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 8 4 3 8 4 3 4 3 4 4 3 4 4 8 4 3 8 4 3 3 4 3 4,7 3 7 3 7 3 3 7 3 3 3 3 7 3 7 3 7 3 3 7 3 3 3 3> {(0, 100): 't3^-1*tau2^-1*t3^-1', (0, 16): 't1^-1', (0, 126): 'tau3', (1, 123): 't1^-1*tau2*t3', (0, 179): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 69): 't3*tau2*t3', (0, 41): 't1*tau2^-1*t3^-1', (0, 146): 'tau3^-1', (0, 139): 't2^-1', (0, 62): 't3', (0, 171): 't3*tau2*t1^-1', (0, 127): 'tau3', (0, 129): 't1^-1*tau2*t3', (0, 55): 't3', (0, 173): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 140): 't2^-1', (0, 185): 'tau1^-1', (0, 24): 't1^-1*tau2*t3', (0, 133): 't2^-1', (1, 97): 't3^-1*tau2^-1*t1', (0, 17): 't1^-1', (0, 48): 't1', (0, 61): 't3', (0, 166): 'tau1', (0, 147): 'tau3^-1', (0, 178): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 191): 'tau1^-1', (0, 40): 't1*tau2^-1*t3^-1', (0, 94): 't3^-1*tau2^-1*t3^-1', (2, 13): 't1^-1*tau2*t3', (0, 170): 't3*tau2*t1^-1', (0, 23): 't1^-1', (0, 128): 't1^-1*tau2*t3', (0, 172): 't3*tau2*t1^-1*tau3^-1*t2*tau1', (0, 25): 't1^-1*tau2*t3', (0, 56): 't3', (0, 101): 't3^-1*tau2^-1*t3^-1', (0, 108): 't2', (2, 117): 't1^-1*tau2*t3', (0, 186): 'tau1^-1', }