U-tiling: UQC2908
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2198 |
*2244 |
(2,6,5) |
{3,7} |
{8.4.4}{4.4.4.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc11293
|
|
P4/nmm |
129 |
tetragonal |
{7,3} |
24 |
(2,6) |
G
|
False
|
|
sqc11295
|
|
I41/a |
88 |
tetragonal |
{7,3,3} |
24 |
(3,7) |
D
|
False
|
|
sqc11299
|
|
I41/amd |
141 |
tetragonal |
{7,3} |
24 |
(2,6) |
Topological data
Vertex degrees | {7,3} |
2D vertex symbol | {8.4.4}{4.4.4.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<59.1:208:14 80 81 6 7 86 87 36 37 38 39 93 94 19 20 99 100 49 50 51 52 53 106 107 32 33 112 113 66 132 133 45 46 138 139 145 146 58 59 151 152 179 180 181 182 119 120 71 72 125 126 205 206 207 208 92 84 85 127 128 129 130 97 98 153 154 155 156 144 110 111 166 167 168 169 131 123 124 136 137 192 193 194 195 149 150 183 197 198 162 163 203 204 196 184 185 175 176 190 191 188 189 201 202,2 4 12 8 11 10 91 15 17 25 21 24 23 104 28 30 38 34 37 36 117 41 43 51 47 50 49 143 54 56 64 60 63 62 156 67 69 77 73 76 75 130 80 82 90 86 89 88 93 95 103 99 102 101 106 108 116 112 115 114 119 121 129 125 128 127 132 134 142 138 141 140 145 147 155 151 154 153 158 160 168 164 167 166 208 171 173 181 177 180 179 195 184 186 194 190 193 192 197 199 207 203 206 205,79 3 5 7 9 11 13 92 16 18 20 22 24 26 105 29 31 33 35 37 39 131 42 44 46 48 50 52 144 55 57 59 61 63 65 118 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 196 159 161 163 165 167 169 183 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 4 8 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,7 3 7 3 7 3 7 3 7 3 7 3 3 3 3 3 3 3 7 3 7 3 3 3> {(0, 39): 't2', (0, 157): 't3*tau2*t1^-1*tau3^-1*t2', (0, 60): 't3^-1*tau2^-1', (0, 41): 'tau3*t2^-1', (0, 8): 't1^-1', (0, 53): 't3^-1*tau2^-1', (0, 190): 't2*tau3^-1*t1^-1*tau2*t3', (0, 20): 't1^-1', (0, 1): 't1^-1', (0, 183): 't2*tau3^-1*t1^-1*tau2*t3', (0, 15): 't1^-1', (0, 195): 'tau1', (0, 34): 'tau2^-1*t3^-1', (0, 47): 'tau3*t2^-1', (0, 118): 'tau3^-1*t2', (0, 14): 't1^-1', (0, 59): 't3^-1*tau2^-1', (0, 164): 't3*tau2*t1^-1*tau3^-1*t2', (0, 124): 'tau3^-1*t2', (0, 7): 't1^-1', (0, 119): 'tau3^-1*t2', (0, 189): 't2*tau3^-1*t1^-1*tau2*t3', (0, 125): 'tau3^-1*t2', (0, 28): 'tau2^-1*t3^-1', (0, 156): 'tau1', (0, 40): 'tau3*t2^-1', (0, 21): 't1^-1', (0, 158): 't3*tau2*t1^-1*tau3^-1*t2', (0, 52): 't3^-1', (0, 33): 'tau2^-1*t3^-1', (0, 54): 't3^-1*tau2^-1', (0, 163): 't3*tau2*t1^-1*tau3^-1*t2', (0, 2): 't1^-1', (0, 143): 't3^-1', (0, 184): 't2*tau3^-1*t1^-1*tau2*t3', (0, 46): 'tau3*t2^-1', (0, 27): 'tau2^-1*t3^-1', (0, 117): 't2^-1', }