U-tiling: UQC293
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc284 |
*2224 |
(2,3,2) |
{4,4} |
{3.12.12.3}{3.12.3.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5496
|
bbn
|
I4/mmm |
139 |
tetragonal |
{4,4} |
12 |
(2,3) |
G
|
False
|
|
sqc11134
|
|
I41/acd |
142 |
tetragonal |
{4,4} |
24 |
(2,4) |
D
|
False
|
|
sqc930
|
|
P42/mmc |
131 |
tetragonal |
{4,4} |
6 |
(2,3) |
Topological data
Vertex degrees | {4,4} |
2D vertex symbol | {3.12.12.3}{3.12.3.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<26.1:192:7 3 5 30 9 11 36 19 15 17 42 21 23 54 43 27 29 55 33 35 61 39 41 45 47 144 73 51 53 57 59 168 63 65 180 79 69 71 102 75 77 192 81 83 120 103 87 89 132 115 93 95 138 109 99 101 105 107 156 111 113 162 117 119 151 123 125 174 145 129 131 157 135 137 163 141 143 147 149 186 153 155 159 161 165 167 181 171 173 187 177 179 183 185 189 191,2 9 6 71 8 12 83 14 21 18 89 20 24 107 26 45 30 95 32 57 36 113 38 63 42 125 44 48 119 50 75 54 149 56 60 101 62 66 155 68 81 72 74 78 131 80 84 86 105 90 92 117 96 98 111 102 104 108 110 114 116 120 122 153 126 128 147 132 134 159 138 167 140 165 144 161 146 150 152 156 158 162 164 168 170 183 174 191 176 189 180 185 182 186 188 192,13 4 5 18 19 10 11 24 16 17 22 23 37 28 29 42 49 34 35 54 40 41 61 46 47 66 52 53 73 58 59 78 64 65 85 70 71 90 76 77 103 82 83 108 88 89 121 94 95 126 127 100 101 132 106 107 145 112 113 150 151 118 119 156 124 125 130 131 169 136 137 174 175 142 143 180 148 149 154 155 181 160 161 186 187 166 167 192 172 173 178 179 184 185 190 191:3 12 12 3 12 12 3 3 3 3 3 3 3 3 3 3 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 186): 'tau1*t3^-1', (2, 60): 't3', (0, 185): 't2', (1, 124): 'tau2', (2, 59): 't2^-1', (2, 54): 't2^-1', (0, 54): 't2^-1', (1, 116): 't3^-1', (0, 180): 'tau1^-1*t3', (2, 179): 't3', (0, 42): 't3^-1', (2, 173): 't3^-1', (2, 47): 't3^-1', (1, 110): 't2', (0, 162): 'tau1', (0, 191): 't2^-1', (1, 88): 't1', (1, 56): 't2^-1', (0, 156): 'tau1^-1', (2, 149): 't2^-1', (2, 144): 't2^-1', (1, 76): 'tau3', (2, 138): 't3^-1', (2, 132): 't3', (1, 64): 'tau2^-1', (1, 184): 't2*tau3^-1*t1^-1*tau2', (2, 120): 't3^-1', (1, 188): 'tau1*t3^-1', (1, 190): 't2^-1*tau3*t1*tau2^-1', (0, 114): 't3^-1', (1, 52): 'tau3', (2, 95): 't3', (0, 108): 't2', (1, 164): 'tau1', (1, 26): 't3', (1, 22): 't1^-1', (1, 170): 't3^-1*tau1', (1, 134): 'tau1'}