U-tiling: UQC310
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc289 |
*2224 |
(2,3,2) |
{3,6} |
{4.8.4}{4.4.8.4.4.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5419
|
|
I4/mmm |
139 |
tetragonal |
{3,6} |
12 |
(2,3) |
G
|
False
|
|
sqc11063
|
|
I41/acd |
142 |
tetragonal |
{3,6} |
24 |
(2,4) |
D
|
False
|
|
sqc893
|
|
P42/mmc |
131 |
tetragonal |
{6,3} |
6 |
(2,3) |
Topological data
Vertex degrees | {3,6} |
2D vertex symbol | {4.8.4}{4.4.8.4.4.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<25.1:192:7 4 5 12 10 11 19 16 17 24 22 23 43 28 29 48 55 34 35 60 61 40 41 66 46 47 73 52 53 78 58 59 64 65 79 70 71 84 76 77 82 83 103 88 89 108 115 94 95 120 109 100 101 114 106 107 112 113 118 119 151 124 125 156 145 130 131 150 157 136 137 162 163 142 143 168 148 149 154 155 160 161 166 167 181 172 173 186 187 178 179 192 184 185 190 191,2 69 6 29 8 81 12 35 14 87 18 41 20 105 24 53 26 93 30 32 111 36 38 123 42 44 117 48 143 50 147 54 56 99 60 167 62 153 66 179 68 72 101 74 129 78 191 80 84 119 86 90 131 92 96 137 98 102 104 108 155 110 114 161 116 120 122 126 173 128 132 134 165 138 140 159 144 146 150 185 152 156 158 162 164 168 170 189 174 176 183 180 182 186 188 192,67 3 5 18 79 9 11 24 85 15 17 103 21 23 91 27 29 42 109 33 35 54 121 39 41 115 45 47 66 145 51 53 97 57 59 78 151 63 65 69 71 90 127 75 77 81 83 108 87 89 93 95 126 99 101 132 105 107 111 113 150 117 119 156 123 125 129 131 163 135 137 174 157 141 143 180 147 149 153 155 159 161 186 165 167 192 187 171 173 181 177 179 183 185 189 191:4 8 8 4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4,3 6 3 6 3 3 3 3 3 3 6 3 3 6 3 6 3 6 6 6 3 3 3 3> {(0, 167): 'tau1', (2, 186): 't2^-1*tau3*t1*tau2^-1', (2, 47): 't3^-1', (0, 95): 't3', (1, 14): 't1^-1', (2, 179): 't3', (0, 162): 'tau1', (2, 173): 't3^-1', (2, 18): 't1^-1', (2, 12): 't1^-1', (1, 50): 'tau3', (1, 170): 'tau2*t1^-1*tau3^-1*t2', (1, 104): 't1', (0, 185): 'tau1^-1*t3', (2, 36): 'tau2^-1', (0, 47): 't3^-1', (0, 90): 't3', (0, 59): 't2^-1', (1, 184): 't2', (2, 59): 't2^-1', (2, 149): 't2^-1', (0, 156): 'tau1^-1', (1, 76): 't2', (2, 180): 't2*tau3^-1*t1^-1*tau2', (0, 191): 'tau1*t3^-1', (2, 125): 't3^-1', (0, 30): 't2', (0, 96): 't2^-1', (0, 180): 'tau1^-1*t3', (0, 161): 'tau1^-1', (0, 42): 't3^-1', (2, 48): 'tau3', (1, 38): 'tau2^-1', (1, 74): 'tau3', (2, 126): 'tau3^-1', (1, 62): 'tau2^-1', (0, 186): 'tau1*t3^-1', (1, 176): 'tau2^-1*t1*tau3*t2^-1', (0, 113): 't2', (2, 60): 'tau2^-1', }