U-tiling: UQC3288
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc302 |
*344 |
(3,3,2) |
{4,4,3} |
{3.3.12.12}{12.12.12.12}{3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc12801
|
|
Pm-3n |
223 |
cubic |
{4,3,4} |
38 |
(3,3) |
G
|
False
|
|
sqc12859
|
|
I-43d |
220 |
cubic |
{4,3,4} |
38 |
(3,3) |
D
|
False
|
|
sqc9228
|
|
P-43m |
215 |
cubic |
{4,4,3} |
19 |
(3,3) |
Topological data
Vertex degrees | {4,4,3} |
2D vertex symbol | {3.3.12.12}{12.12.12.12}{3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<16.1:288:31 6 33 5 49 12 51 11 73 18 75 17 109 24 111 23 115 30 117 29 36 35 169 42 171 41 157 48 159 47 54 53 103 60 105 59 127 66 129 65 211 72 213 71 78 77 145 84 147 83 181 90 183 89 199 96 201 95 193 102 195 101 108 107 114 113 120 119 163 126 165 125 132 131 247 138 249 137 241 144 243 143 150 149 253 156 255 155 162 161 168 167 174 173 217 180 219 179 186 185 229 192 231 191 198 197 204 203 277 210 279 209 216 215 222 221 271 228 273 227 234 233 265 240 267 239 246 245 252 251 258 257 283 264 285 263 270 269 276 275 282 281 288 287,2 4 11 36 8 10 54 14 16 29 78 20 22 41 114 26 28 120 32 34 59 38 40 174 44 46 71 162 50 52 83 56 58 108 62 64 101 132 68 70 216 74 76 125 80 82 150 86 88 143 186 92 94 155 204 98 100 198 104 106 149 110 112 179 116 118 191 122 124 168 128 130 185 134 136 209 252 140 142 246 146 148 152 154 258 158 160 227 164 166 233 170 172 239 176 178 222 182 184 188 190 234 194 196 245 200 202 251 206 208 282 212 214 263 218 220 269 224 226 276 230 232 236 238 270 242 244 248 250 254 256 281 260 262 288 266 268 272 274 287 278 280 284 286,3 14 16 17 18 9 20 22 23 24 15 21 27 44 46 47 48 33 62 64 65 66 39 68 70 71 72 45 51 86 88 89 90 57 92 94 95 96 63 69 75 128 130 131 132 81 134 136 137 138 87 93 99 158 160 161 162 105 164 166 167 168 111 182 184 185 186 117 194 196 197 198 123 200 202 203 204 129 135 141 212 214 215 216 147 218 220 221 222 153 224 226 227 228 159 165 171 242 244 245 246 177 248 250 251 252 183 189 254 256 257 258 195 201 207 260 262 263 264 213 219 225 231 272 274 275 276 237 278 280 281 282 243 249 255 261 267 284 286 287 288 273 279 285:3 12 3 3 12 3 12 3 3 3 12 3 3 12 3 3 3 3 12 3 3 3 3 3 3 3 3 3 3 3,4 4 3 4 3 4 3 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 3 4 4 4> {(2, 189): 'tau1', (2, 190): 'tau1', (2, 191): 'tau1', (1, 239): 't1^-1*tau3^-1', (2, 187): 'tau1', (1, 113): 't1', (2, 53): 't1^-1', (0, 176): 'tau3^-1', (2, 49): 't1^-1', (2, 51): 't1^-1', (0, 42): 't3', (2, 173): 'tau2^-1', (0, 174): 'tau3^-1', (2, 169): 'tau2^-1', (0, 44): 't3', (2, 171): 'tau2^-1', (2, 165): 't2^-1', (2, 166): 't2^-1', (2, 167): 't2^-1', (1, 227): 'tau1^-1', (2, 163): 't2^-1', (0, 282): 'tau1*t3^-1*tau2^-1', (2, 285): 't2^-1', (2, 286): 't2^-1', (2, 287): 't2^-1', (0, 66): 'tau2^-1', (1, 95): 't2', (2, 283): 't2^-1', (0, 18): 't1^-1', (0, 20): 't1^-1', (2, 52): 't1^-1', (2, 136): 'tau3^-1', (2, 137): 'tau3^-1', (2, 133): 'tau3^-1', (2, 135): 'tau3^-1', (1, 71): 'tau2^-1', (2, 244): 'tau2', (1, 179): 'tau3^-1', (0, 234): 't1^-1*tau3^-1', (2, 237): 'tau2^-1*t3^-1*tau1', (2, 238): 'tau2^-1*t3^-1*tau1', (2, 239): 'tau2^-1*t3^-1*tau1', (1, 47): 't3', (2, 235): 'tau2^-1*t3^-1*tau1', (0, 224): 'tau1^-1', (0, 90): 't2', (1, 287): 'tau1*t3^-1*tau2^-1', (0, 284): 'tau1*t3^-1*tau2^-1', (0, 92): 't2', (0, 270): 'tau1', (2, 208): 'tau3^-1*t1^-1', (2, 209): 'tau3^-1*t1^-1', (1, 209): 't2^-1', (2, 205): 'tau3^-1*t1^-1', (2, 207): 'tau3^-1*t1^-1', (0, 206): 't2^-1', (0, 204): 't2^-1', (2, 196): 't3^-1', (2, 197): 't3^-1', (0, 236): 't1^-1*tau3^-1', (2, 193): 't3^-1', (0, 68): 'tau2^-1', (2, 195): 't3^-1'}