U-tiling: UQC3361
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc466 |
*2244 |
(3,4,2) |
{4,4,4} |
{16.16.16.16}{16.3.3.16}{3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc6079
|
|
P42/mmc |
131 |
tetragonal |
{3,4,4} |
14 |
(3,4) |
G
|
False
|
|
sqc6657
|
|
I-42d |
122 |
tetragonal |
{4,4,4} |
14 |
(3,4) |
D
|
False
|
|
sqc1261
|
|
P4/mmm |
123 |
tetragonal |
{4,4,4} |
7 |
(3,4) |
Topological data
Vertex degrees | {4,4,4} |
2D vertex symbol | {16.16.16.16}{16.3.3.16}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<31.1:112:43 3 18 19 7 50 10 25 26 14 22 17 21 24 28 36 31 46 47 35 38 53 54 42 45 49 52 56 99 59 74 75 63 106 66 81 82 70 78 73 77 80 84 92 87 102 103 91 94 109 110 98 101 105 108 112,2 4 6 21 9 11 13 28 16 18 20 23 25 27 30 32 34 49 37 39 41 56 44 46 48 51 53 55 58 60 62 77 65 67 69 84 72 74 76 79 81 83 86 88 90 105 93 95 97 112 100 102 104 107 109 111,57 9 10 5 13 14 64 12 71 30 31 19 34 35 78 37 38 26 41 42 85 33 92 40 99 51 52 47 55 56 106 54 65 66 61 69 70 68 86 87 75 90 91 93 94 82 97 98 89 96 107 108 103 111 112 110:16 3 3 3 3 16 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 59): 't2', (0, 63): 't1^-1*tau2*t3', (0, 60): 't2', (0, 49): 't3^-1*tau2^-1*t1', (0, 52): 't3^-1*tau2^-1*t3^-1', (0, 53): 't3^-1*tau2^-1*t3^-1', (1, 104): 'tau1^-1', (0, 46): 't3^-1', (2, 41): 't3*tau2*t1^-1', (1, 111): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (0, 45): 't3^-1', (2, 37): 't3*tau2*t1^-1', (0, 24): 't1', (2, 26): 't1*tau2^-1*t3^-1', (0, 102): 'tau1^-1', (2, 22): 't1*tau2^-1*t3^-1', (0, 11): 't1^-1', (1, 76): 't2^-1', (1, 69): 'tau3', (1, 48): 't3^-1', (1, 55): 't3^-1*tau2^-1*t3^-1', (0, 108): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (0, 109): 'tau1^-1*t2^-1*tau3*t1*tau2^-1*t3^-1', (2, 96): 't3*tau2*t1^-1', (2, 97): 't3*tau2*t1^-1', (0, 101): 'tau1^-1', (2, 92): 't3*tau2*t1^-1', (1, 27): 't1', (0, 80): 'tau3^-1', (2, 79): 't1*tau2^-1*t3^-1', (0, 67): 'tau3'}