U-tiling: UQC3394
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc508 |
*2224 |
(3,3,2) |
{3,6,4} |
{6.4.6}{6.4.4.6.4.4}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6802
|
|
I4/mmm |
139 |
tetragonal |
{3,6,4} |
14 |
(3,3) |
G
|
False
|
|
sqc11929
|
|
I41/acd |
142 |
tetragonal |
{3,6,4} |
28 |
(3,4) |
D
|
False
|
|
sqc6751
|
|
P42/nnm |
134 |
tetragonal |
{3,4,6} |
14 |
(3,3) |
Topological data
Vertex degrees | {3,6,4} |
2D vertex symbol | {6.4.6}{6.4.4.6.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<45.2:224:8 3 5 7 10 12 14 22 17 19 21 24 26 28 50 31 33 35 64 38 40 42 71 45 47 49 52 54 56 85 59 61 63 66 68 70 73 75 77 92 80 82 84 87 89 91 94 96 98 120 101 103 105 134 108 110 112 127 115 117 119 122 124 126 129 131 133 136 138 140 176 143 145 147 169 150 152 154 183 157 159 161 190 164 166 168 171 173 175 178 180 182 185 187 189 192 194 196 211 199 201 203 218 206 208 210 213 215 217 220 222 224,2 17 81 6 84 9 24 95 13 98 16 102 20 105 23 123 27 126 30 45 109 34 112 37 59 130 41 133 44 144 48 147 51 73 137 55 140 58 172 62 175 65 87 116 69 119 72 179 76 182 79 101 83 86 151 90 154 93 122 97 100 104 107 143 111 114 150 118 121 125 128 171 132 135 178 139 142 146 149 153 156 199 193 160 196 163 206 186 167 189 170 174 177 181 184 213 188 191 220 195 198 221 202 224 205 214 209 217 212 216 219 223,78 4 5 34 35 92 11 12 41 42 99 18 19 48 49 120 25 26 62 63 106 32 33 127 39 40 141 46 47 134 53 54 167 168 169 60 61 113 67 68 195 196 176 74 75 209 210 81 82 118 119 148 88 89 223 224 95 96 139 140 102 103 153 154 109 110 160 161 116 117 123 124 181 182 130 131 188 189 137 138 144 145 202 203 151 152 190 158 159 183 165 166 172 173 216 217 179 180 186 187 193 194 218 200 201 211 207 208 214 215 221 222:6 4 4 4 4 6 4 6 4 4 4 4 4 4 6 4 6 6 6 4 6 4 4 4,3 6 4 3 6 4 3 4 3 4 3 3 3 3 6 3 3 6 3 6 3 6 6 6 3 3 3 3> {(1, 122): 't1', (2, 56): 'tau3', (0, 63): 't2^-1', (0, 189): 'tau1', (0, 49): 't3^-1', (0, 182): 'tau1^-1', (2, 173): 't2^-1', (2, 174): 't2^-1', (2, 175): 'tau2', (2, 42): 'tau2^-1', (0, 217): 'tau1*t3^-1', (1, 86): 't2', (1, 101): 't1', (1, 216): 't2*tau3^-1*t1^-1*tau2', (1, 107): 't3', (1, 90): 'tau3', (1, 220): 't2^-1*tau3*t1*tau2^-1', (2, 21): 't1^-1', (1, 213): 't2*tau3^-1*t1^-1*tau2', (1, 87): 'tau3', (2, 147): 'tau3^-1', (1, 73): 'tau2^-1', (1, 72): 't3', (2, 14): 't1^-1', (1, 202): 'tau2*t1^-1*tau3^-1*t2', (1, 205): 't3', (1, 76): 'tau2^-1', (0, 133): 't3^-1', (1, 59): 'tau3', (0, 126): 't2', (1, 62): 'tau3', (1, 27): 't1^-1', (1, 170): 't2^-1', (1, 45): 'tau2^-1', (1, 156): 't3', (2, 222): 't2^-1', (2, 223): 't2^-1', (2, 217): 't2^-1*tau3*t1*tau2^-1', (0, 210): 'tau1^-1*t3', (1, 146): 'tau2', (1, 20): 't1^-1', (2, 203): 'tau2^-1*t1*tau3*t2^-1'}