U-tiling: UQC3446
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc541 |
*2224 |
(3,3,2) |
{4,3,8} |
{5.5.5.5}{5.4.5}{5.4.5.4.5.4.5.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc1350
|
|
P4/mmm |
123 |
tetragonal |
{4,8,3} |
7 |
(3,3) |
G
|
False
|
|
sqc11909
|
|
I41/acd |
142 |
tetragonal |
{4,3,8} |
28 |
(3,4) |
D
|
False
|
|
sqc6446
|
|
P42/nnm |
134 |
tetragonal |
{3,4,8} |
14 |
(3,3) |
Topological data
Vertex degrees | {4,3,8} |
2D vertex symbol | {5.5.5.5}{5.4.5}{5.4.5.4.5.4.5.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<51.1:224:78 3 5 7 92 10 12 14 99 17 19 21 120 24 26 28 106 31 33 35 127 38 40 42 141 45 47 49 134 52 54 56 169 59 61 63 113 66 68 70 176 73 75 77 80 82 84 148 87 89 91 94 96 98 101 103 105 108 110 112 115 117 119 122 124 126 129 131 133 136 138 140 143 145 147 150 152 154 190 157 159 161 183 164 166 168 171 173 175 178 180 182 185 187 189 192 194 196 218 199 201 203 211 206 208 210 213 215 217 220 222 224,2 4 82 20 35 9 11 96 27 42 16 18 103 49 23 25 124 63 30 32 110 48 37 39 131 62 44 46 145 51 53 138 76 168 58 60 173 65 67 117 90 196 72 74 180 210 79 81 104 119 86 88 152 224 93 95 125 140 100 102 154 107 109 146 161 114 116 153 121 123 182 128 130 174 189 135 137 181 142 144 203 149 151 156 158 194 202 163 165 187 209 170 172 217 177 179 184 186 216 191 193 223 198 200 222 205 207 215 212 214 219 221,8 16 17 6 7 23 24 13 14 22 20 21 27 28 50 44 45 34 35 64 58 59 41 42 71 48 49 72 73 55 56 85 62 63 86 87 69 70 76 77 92 100 101 83 84 90 91 121 122 97 98 120 104 105 134 142 143 111 112 127 149 150 118 119 125 126 170 171 132 133 177 178 139 140 176 146 147 169 153 154 183 198 199 160 161 190 205 206 167 168 174 175 181 182 212 213 188 189 219 220 195 196 211 202 203 218 209 210 216 217 223 224:5 4 5 4 5 5 5 5 5 5 4 5 5 4 5 4 5 4 4 4 5 5 5 5,4 3 8 3 8 8 8 4 3 4 3 3 3 4 3 3 4 3 4 3 3 3 4 3 4 3 3 3> {(2, 189): 'tau1', (0, 56): 'tau3', (2, 63): 't2^-1', (2, 182): 'tau1^-1', (2, 107): 't3', (1, 123): 't1', (2, 50): 't3^-1', (2, 51): 't3^-1', (0, 42): 'tau2^-1', (2, 169): 't2^-1', (2, 170): 't2^-1', (1, 110): 't3', (2, 162): 't3^-1', (1, 102): 't1', (1, 89): 't2', (1, 88): 'tau3', (1, 90): 't2', (1, 221): 't2^-1*tau3*t1*tau2^-1', (2, 155): 't3', (1, 208): 't3', (0, 21): 't1^-1', (1, 201): 't3^-1', (2, 141): 't3^-1', (1, 75): 't3', (1, 74): 'tau2^-1', (0, 14): 't1^-1', (1, 207): 'tau2^-1*t1*tau3*t2^-1', (2, 133): 't3^-1', (2, 126): 't2', (1, 216): 't2', (2, 49): 't3^-1', (1, 173): 't2^-1', (1, 172): 'tau3^-1', (1, 46): 'tau2^-1', (0, 217): 't2^-1*tau3*t1*tau2^-1', (2, 217): 'tau1*t3^-1', (0, 210): 't2*tau3^-1*t1^-1*tau2', (2, 64): 't2^-1', (2, 86): 't2', (0, 84): 'tau3', (2, 205): 't3', (2, 196): 't3^-1*tau1', (2, 198): 't3^-1', (0, 70): 'tau2^-1'}