U-tiling: UQC3460
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc545 |
*2224 |
(3,3,2) |
{8,3,4} |
{5.5.5.5.5.5.5.5}{5.4.5}{5.4.5.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6429
|
|
I4/mmm |
139 |
tetragonal |
{4,3,8} |
14 |
(3,3) |
G
|
False
|
|
sqc11745
|
|
I41/acd |
142 |
tetragonal |
{8,3,4} |
28 |
(3,4) |
D
|
False
|
|
sqc6392
|
|
P42/nnm |
134 |
tetragonal |
{3,4,8} |
14 |
(3,3) |
Topological data
Vertex degrees | {8,3,4} |
2D vertex symbol | {5.5.5.5.5.5.5.5}{5.4.5}{5.4.5.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<52.2:224:8 3 5 7 10 12 14 22 17 19 21 24 26 28 50 31 33 35 64 38 40 42 71 45 47 49 52 54 56 85 59 61 63 66 68 70 73 75 77 92 80 82 84 87 89 91 94 96 98 120 101 103 105 134 108 110 112 127 115 117 119 122 124 126 129 131 133 136 138 140 176 143 145 147 169 150 152 154 183 157 159 161 190 164 166 168 171 173 175 178 180 182 185 187 189 192 194 196 211 199 201 203 218 206 208 210 213 215 217 220 222 224,2 4 12 34 21 9 11 41 28 16 18 26 48 23 25 62 30 32 54 49 37 39 68 63 44 46 75 51 53 167 77 58 60 89 65 67 195 91 72 74 209 79 81 96 118 105 86 88 223 93 95 139 126 100 102 124 153 107 109 138 160 147 114 116 131 154 121 123 181 128 130 188 175 135 137 182 142 144 180 202 149 151 173 156 158 187 203 163 165 194 210 170 172 216 177 179 184 186 217 191 193 224 198 200 215 205 207 222 212 214 219 221,78 30 31 6 7 92 37 38 13 14 99 44 45 20 21 120 58 59 27 28 106 34 35 127 41 42 141 48 49 134 163 164 55 56 169 62 63 113 191 192 69 70 176 205 206 76 77 114 115 83 84 148 219 220 90 91 135 136 97 98 149 150 104 105 156 157 111 112 118 119 177 178 125 126 184 185 132 133 139 140 198 199 146 147 153 154 190 160 161 183 167 168 212 213 174 175 181 182 188 189 195 196 218 202 203 211 209 210 216 217 223 224:5 4 4 5 5 5 5 4 5 4 5 4 4 5 5 4 5 4 5 5 5 5 5 5,8 3 4 8 3 8 3 8 3 4 4 3 3 3 3 4 3 3 3 3 4 4 3 3 3 4 4 3> {(2, 56): 'tau3', (2, 170): 't2^-1', (0, 189): 'tau1', (0, 49): 't3^-1', (0, 182): 'tau1^-1', (1, 116): 't2^-1', (2, 175): 'tau2', (2, 169): 't2^-1', (1, 111): 't3', (0, 35): 't2', (1, 214): 'tau1^-1*t3', (1, 89): 't2', (1, 90): 't2', (1, 221): 'tau1*t3^-1', (1, 209): 't3', (2, 21): 't1^-1', (1, 215): 't2', (2, 147): 'tau3^-1', (2, 14): 't1^-1', (1, 202): 't3^-1', (1, 76): 't3', (1, 193): 'tau1', (1, 67): 't2^-1', (1, 186): 'tau1^-1', (0, 126): 't2', (0, 105): 't3', (1, 174): 't2^-1', (1, 32): 't3', (2, 217): 't2^-1*tau3*t1*tau2^-1', (2, 218): 't2^-1', (2, 219): 't2^-1', (0, 210): 'tau1^-1*t3', (2, 210): 't2*tau3^-1*t1^-1*tau2', (1, 137): 't3^-1', (0, 203): 't3*tau1^-1', (2, 42): 'tau2^-1'}