U-tiling: UQC3465
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc548 |
*2224 |
(3,3,2) |
{4,3,4} |
{5.5.5.5}{5.8.5}{5.8.5.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6955
|
|
I4/mmm |
139 |
tetragonal |
{3,4,4} |
16 |
(3,3) |
G
|
False
|
|
sqc12035
|
|
I41/acd |
142 |
tetragonal |
{4,3,4} |
32 |
(3,4) |
D
|
False
|
|
sqc6658
|
|
P42/nnm |
134 |
tetragonal |
{3,4,4} |
16 |
(3,3) |
Topological data
Vertex degrees | {4,3,4} |
2D vertex symbol | {5.5.5.5}{5.8.5}{5.8.5.8} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<53.1:224:8 3 5 7 10 12 14 22 17 19 21 24 26 28 50 31 33 35 64 38 40 42 71 45 47 49 52 54 56 85 59 61 63 66 68 70 73 75 77 92 80 82 84 87 89 91 94 96 98 120 101 103 105 134 108 110 112 127 115 117 119 122 124 126 129 131 133 136 138 140 176 143 145 147 169 150 152 154 183 157 159 161 190 164 166 168 171 173 175 178 180 182 185 187 189 192 194 196 211 199 201 203 218 206 208 210 213 215 217 220 222 224,2 4 12 34 84 9 11 41 98 16 18 26 48 105 23 25 62 126 30 32 54 112 37 39 68 133 44 46 75 147 51 53 167 140 58 60 89 175 65 67 195 119 72 74 209 182 79 81 96 118 86 88 223 154 93 95 139 100 102 124 153 107 109 138 160 114 116 131 121 123 181 128 130 188 135 137 142 144 180 202 149 151 173 156 158 187 196 163 165 194 189 170 172 216 177 179 184 186 191 193 198 200 215 224 205 207 222 217 212 214 219 221,15 30 31 6 7 22 37 38 13 14 44 45 20 21 58 59 27 28 43 34 35 57 41 42 48 49 71 163 164 55 56 62 63 85 191 192 69 70 205 206 76 77 99 114 115 83 84 219 220 90 91 120 135 136 97 98 149 150 104 105 141 156 157 111 112 148 118 119 177 178 125 126 169 184 185 132 133 176 139 140 198 199 146 147 153 154 197 160 161 204 167 168 212 213 174 175 181 182 211 188 189 218 195 196 202 203 209 210 216 217 223 224:5 8 8 5 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5,4 3 4 4 3 3 4 3 4 4 4 4 3 4 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4> {(2, 63): 't2^-1', (1, 125): 't1', (0, 63): 't2^-1', (0, 189): 'tau1', (0, 49): 't3^-1', (0, 182): 'tau1^-1', (1, 116): 't2^-1', (1, 104): 't1', (1, 109): 't3', (2, 169): 't2^-1', (2, 170): 't2^-1', (2, 161): 't3^-1', (1, 89): 't2', (1, 216): 't2*tau3^-1*t1^-1*tau2', (1, 90): 'tau3', (1, 221): 'tau1*t3^-1', (2, 154): 't3', (1, 215): 't2', (1, 214): 'tau1^-1*t3', (2, 140): 't3^-1', (1, 202): 'tau2*t1^-1*tau3^-1*t2', (1, 76): 'tau2^-1', (1, 193): 'tau1', (1, 67): 't2^-1', (0, 133): 't3^-1', (2, 126): 't2', (1, 186): 'tau1^-1', (0, 126): 't2', (1, 62): 'tau3', (1, 48): 'tau2^-1', (1, 53): 't3^-1', (2, 49): 't3^-1', (2, 218): 't2^-1', (2, 219): 't2^-1', (0, 210): 'tau1^-1*t3', (0, 203): 't3*tau1^-1'}