U-tiling: UQC3486
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc555 |
*2224 |
(3,3,2) |
{3,6,4} |
{5.4.5}{5.5.4.5.5.4}{5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6806
|
|
I4/mmm |
139 |
tetragonal |
{3,4,6} |
14 |
(3,3) |
G
|
False
|
|
sqc11932
|
|
I41/acd |
142 |
tetragonal |
{3,6,4} |
28 |
(3,4) |
D
|
False
|
|
sqc6805
|
|
P42/nnm |
134 |
tetragonal |
{6,4,3} |
14 |
(3,3) |
Topological data
Vertex degrees | {3,6,4} |
2D vertex symbol | {5.4.5}{5.5.4.5.5.4}{5.5.5.5} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<54.2:224:29 3 5 7 36 10 12 14 43 17 19 21 57 24 26 28 31 33 35 38 40 42 45 47 49 162 52 54 56 59 61 63 190 66 68 70 204 73 75 77 113 80 82 84 218 87 89 91 134 94 96 98 148 101 103 105 155 108 110 112 115 117 119 176 122 124 126 183 129 131 133 136 138 140 197 143 145 147 150 152 154 157 159 161 164 166 168 211 171 173 175 178 180 182 185 187 189 192 194 196 199 201 203 206 208 210 213 215 217 220 222 224,2 6 18 12 35 9 13 25 42 16 20 26 49 23 27 63 30 34 46 54 37 41 60 68 44 48 75 51 55 74 168 58 62 89 65 69 88 196 72 76 210 79 83 102 96 119 86 90 224 93 97 123 140 100 104 124 154 107 111 144 138 161 114 118 151 131 121 125 182 128 132 172 189 135 139 179 142 146 180 203 149 153 173 156 160 200 187 163 167 207 194 170 174 217 177 181 184 188 214 191 195 221 198 202 215 205 209 222 212 216 219 223,15 4 5 83 84 22 11 12 97 98 18 19 104 105 25 26 125 126 43 32 33 111 112 57 39 40 132 133 46 47 146 147 71 53 54 139 140 60 61 174 175 85 67 68 118 119 74 75 181 182 99 81 82 88 89 153 154 120 95 96 102 103 141 109 110 148 116 117 123 124 169 130 131 176 137 138 144 145 151 152 197 158 159 195 196 204 165 166 188 189 172 173 179 180 211 186 187 218 193 194 200 201 223 224 207 208 216 217 214 215 221 222:5 4 5 5 5 4 4 5 5 5 5 4 5 5 5 5 4 4 5 5 5 4 4 5,3 6 4 3 4 6 4 4 3 6 3 6 6 3 6 3 3 3 3 3 3 3 3 6 3 3 3 6> {(2, 61): 'tau3', (2, 62): 'tau3', (2, 63): 't2^-1', (2, 180): 'tau2', (2, 181): 'tau2', (2, 48): 'tau2^-1', (2, 49): 't3^-1', (0, 168): 't2^-1', (2, 47): 'tau2^-1', (1, 109): 't3', (1, 108): 't3', (2, 19): 't1^-1', (2, 161): 't3^-1', (1, 73): 't3', (1, 90): 't2', (2, 152): 'tau3^-1', (2, 153): 'tau3^-1', (2, 26): 't1^-1', (2, 27): 't1^-1', (2, 20): 't1^-1', (1, 214): 'tau1^-1*t3', (2, 140): 't3^-1', (1, 206): 't3', (1, 193): 'tau1', (1, 67): 't2^-1', (1, 66): 't2^-1', (1, 199): 't3^-1', (2, 126): 't2', (1, 186): 'tau1^-1', (1, 216): 't2', (1, 53): 't3^-1', (1, 116): 't2^-1', (1, 171): 't2^-1', (1, 221): 'tau1*t3^-1', (2, 222): 't2^-1*tau3*t1*tau2^-1', (0, 217): 't2^-1', (2, 216): 't2*tau3^-1*t1^-1*tau2', (2, 154): 't3', (2, 215): 't2*tau3^-1*t1^-1*tau2', (2, 202): 'tau2*t1^-1*tau3^-1*t2'}