U-tiling: UQC3505
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc568 |
*2224 |
(3,3,2) |
{3,3,4} |
{10.4.10}{10.10.4}{10.10.10.10} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6975
|
|
I4/mmm |
139 |
tetragonal |
{3,3,4} |
18 |
(3,3) |
G
|
False
|
|
sqc12040
|
|
I41/acd |
142 |
tetragonal |
{3,3,4} |
36 |
(3,4) |
D
|
False
|
|
sqc1443
|
|
I4/mmm |
139 |
tetragonal |
{3,4,3} |
9 |
(3,3) |
Topological data
Vertex degrees | {3,3,4} |
2D vertex symbol | {10.4.10}{10.10.4}{10.10.10.10} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<56.1:224:8 3 5 7 10 12 14 22 17 19 21 24 26 28 50 31 33 35 64 38 40 42 71 45 47 49 52 54 56 85 59 61 63 66 68 70 73 75 77 92 80 82 84 87 89 91 94 96 98 120 101 103 105 134 108 110 112 127 115 117 119 122 124 126 129 131 133 136 138 140 176 143 145 147 169 150 152 154 183 157 159 161 190 164 166 168 171 173 175 178 180 182 185 187 189 192 194 196 211 199 201 203 218 206 208 210 213 215 217 220 222 224,2 6 18 33 84 9 13 25 40 98 16 20 47 105 23 27 61 126 30 34 46 112 37 41 60 133 44 48 147 51 55 74 166 140 58 62 175 65 69 88 194 119 72 76 208 182 79 83 102 117 86 90 222 154 93 97 123 138 100 104 152 107 111 144 159 114 118 151 121 125 180 128 132 172 187 135 139 179 142 146 201 149 153 156 160 200 196 163 167 207 189 170 174 215 177 181 184 188 214 191 195 221 198 202 224 205 209 217 212 216 219 223,15 4 5 34 35 22 11 12 41 42 18 19 48 49 25 26 62 63 43 32 33 57 39 40 46 47 71 53 54 167 168 60 61 85 67 68 195 196 74 75 209 210 99 81 82 118 119 88 89 223 224 120 95 96 139 140 102 103 153 154 141 109 110 160 161 148 116 117 123 124 181 182 169 130 131 188 189 176 137 138 144 145 202 203 151 152 197 158 159 204 165 166 172 173 216 217 179 180 211 186 187 218 193 194 200 201 207 208 214 215 221 222:10 4 4 10 10 10 10 4 10 4 4 4 4 4 10 10,3 3 4 3 3 4 3 4 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3> {(2, 63): 't2^-1', (1, 125): 't1', (0, 63): 't2^-1', (0, 189): 'tau1', (0, 49): 't3^-1', (0, 182): 'tau1^-1', (2, 49): 't3^-1', (2, 173): 't2^-1', (2, 174): 't2^-1', (2, 168): 't2^-1', (1, 108): 't3', (2, 161): 't3^-1', (1, 88): 't2', (1, 90): 'tau3', (2, 154): 't3', (1, 209): 'tau2^-1*t1*tau3*t2^-1', (1, 87): 't2', (1, 214): 't2', (1, 73): 't3', (1, 202): 'tau2*t1^-1*tau3^-1*t2', (1, 76): 'tau2^-1', (2, 140): 't3^-1', (1, 199): 't3^-1', (0, 133): 't3^-1', (0, 126): 't2', (1, 62): 'tau3', (1, 206): 't3', (2, 223): 't2^-1', (2, 222): 't2^-1', (0, 217): 'tau1*t3^-1', (1, 104): 't1', (0, 210): 'tau1^-1*t3', (1, 146): 'tau2', (1, 129): 't2'}