U-tiling: UQC3557
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc757 |
*2224 |
(3,4,2) |
{8,3,4} |
{3.5.5.3.3.5.5.3}{3.5.5}{5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7824
|
|
I4/mmm |
139 |
tetragonal |
{3,8,4} |
14 |
(3,4) |
G
|
False
|
|
sqc12353
|
|
I41/acd |
142 |
tetragonal |
{8,3,4} |
28 |
(3,5) |
D
|
False
|
|
sqc7864
|
|
P42/nnm |
134 |
tetragonal |
{8,3,4} |
14 |
(3,4) |
Topological data
Vertex degrees | {8,3,4} |
2D vertex symbol | {3.5.5.3.3.5.5.3}{3.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<59.1:256:89 3 5 38 8 105 11 13 46 16 113 19 21 54 24 137 27 29 70 32 121 35 37 40 145 43 45 48 161 51 53 56 153 59 61 190 64 193 67 69 72 129 75 77 222 80 201 83 85 238 88 91 93 134 96 169 99 101 254 104 107 109 158 112 115 117 174 120 123 125 182 128 131 133 136 139 141 206 144 147 149 214 152 155 157 160 163 165 230 168 171 173 176 217 179 181 184 209 187 189 192 195 197 246 200 203 205 208 211 213 216 219 221 224 249 227 229 232 241 235 237 240 243 245 248 251 253 256,2 91 6 7 40 10 107 14 15 48 18 115 22 23 56 26 139 30 31 72 34 123 38 39 42 147 46 47 50 163 54 55 58 155 62 63 192 66 195 70 71 74 131 78 79 224 82 203 86 87 240 90 94 95 136 98 171 102 103 256 106 110 111 160 114 118 119 176 122 126 127 184 130 134 135 138 142 143 208 146 150 151 216 154 158 159 162 166 167 232 170 174 175 178 219 182 183 186 211 190 191 194 198 199 248 202 206 207 210 214 215 218 222 223 226 251 230 231 234 243 238 239 242 246 247 250 254 255,9 4 5 22 95 96 12 13 30 111 112 25 20 21 119 120 28 29 143 144 57 36 37 54 127 128 73 44 45 70 151 152 81 52 53 167 168 60 61 86 159 160 97 68 69 199 200 76 77 102 135 136 84 85 207 208 105 92 93 118 100 101 175 176 108 109 142 137 116 117 153 124 125 166 145 132 133 174 140 141 148 149 198 156 157 206 201 164 165 193 172 173 209 180 181 230 223 224 217 188 189 238 215 216 196 197 204 205 212 213 246 220 221 254 241 228 229 255 256 249 236 237 247 248 244 245 252 253:3 5 3 5 3 5 3 5 3 3 3 3 5 3 3 5 3 5 5 3 5 5 5 5 5 5 5 3 3 5 3 3,8 3 4 3 4 3 4 3 4 8 3 8 3 3 3 3 3 3 8 3 8 8 8 3 8 3 3 3> {(2, 189): 't3^-1', (1, 250): 't2^-1*tau3*t1*tau2^-1', (2, 184): 'tau1^-1', (2, 61): 't3^-1', (2, 181): 't3', (0, 48): 'tau2^-1', (1, 114): 't1', (2, 176): 'tau1', (0, 248): 't2^-1*tau3*t1*tau2^-1', (1, 247): 't2', (2, 56): 't3^-1', (2, 174): 'tau3^-1', (2, 175): 'tau3^-1', (2, 40): 't2', (2, 165): 't3^-1', (2, 166): 'tau2', (2, 167): 'tau2', (1, 234): 'tau2^-1*t1*tau3*t2^-1', (1, 103): 't2', (0, 24): 't1^-1', (1, 98): 'tau3', (2, 152): 't3^-1', (2, 23): 't1^-1', (2, 149): 't2', (0, 16): 't1^-1', (1, 82): 'tau2^-1', (2, 144): 't2', (2, 142): 't1', (2, 143): 't1', (1, 66): 'tau3', (2, 254): 't2^-1*tau3*t1*tau2^-1', (2, 255): 't2^-1*tau3*t1*tau2^-1', (2, 248): 'tau1*t3^-1', (0, 240): 't2*tau3^-1*t1^-1*tau2', (1, 50): 'tau2^-1', (2, 240): 'tau1^-1*t3', (0, 245): 't2', (2, 238): 'tau2^-1*t1*tau3*t2^-1', (2, 239): 'tau2^-1*t1*tau3*t2^-1', (2, 101): 't2', (0, 96): 'tau3', (2, 198): 'tau3^-1', (0, 101): 't2', (1, 26): 't1^-1', (0, 80): 'tau2^-1', (2, 206): 'tau2', (2, 207): 'tau2', (0, 64): 'tau3', (2, 199): 'tau3^-1', (2, 22): 't1^-1'}