U-tiling: UQC3583
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc774 |
*2224 |
(3,4,2) |
{3,4,4} |
{5.6.5}{5.5.6.6}{5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8156
|
|
I4/mmm |
139 |
tetragonal |
{3,4,4} |
18 |
(3,4) |
G
|
False
|
|
sqc12468
|
|
I41/acd |
142 |
tetragonal |
{3,4,4} |
36 |
(3,5) |
D
|
False
|
|
sqc8080
|
|
P42/nnm |
134 |
tetragonal |
{3,4,4} |
18 |
(3,4) |
Topological data
Vertex degrees | {3,4,4} |
2D vertex symbol | {5.6.5}{5.5.6.6}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<64.1:256:89 3 5 22 8 105 11 13 30 16 113 19 21 24 137 27 29 32 121 35 37 54 40 145 43 45 70 48 161 51 53 56 153 59 61 86 64 193 67 69 72 129 75 77 102 80 201 83 85 88 91 93 118 96 169 99 101 104 107 109 142 112 115 117 120 123 125 166 128 131 133 174 136 139 141 144 147 149 198 152 155 157 206 160 163 165 168 171 173 176 217 179 181 230 184 209 187 189 238 192 195 197 200 203 205 208 211 213 246 216 219 221 254 224 249 227 229 232 241 235 237 240 243 245 248 251 253 256,2 7 12 6 96 10 15 14 112 18 23 28 22 120 26 31 30 144 34 39 60 38 128 42 47 76 46 152 50 55 84 54 168 58 63 62 160 66 71 100 70 200 74 79 78 136 82 87 86 208 90 95 108 94 98 103 102 176 106 111 110 114 119 140 118 122 127 156 126 130 135 148 134 138 143 142 146 151 150 154 159 158 162 167 204 166 170 175 196 174 178 183 212 182 224 186 191 220 190 216 194 199 198 202 207 206 210 215 214 218 223 222 226 231 244 230 256 234 239 252 238 248 242 247 246 250 255 254,9 4 5 38 39 40 12 13 46 47 48 25 20 21 54 55 56 28 29 70 71 72 57 36 37 73 44 45 81 52 53 60 61 190 191 192 97 68 69 76 77 222 223 224 84 85 238 239 240 105 92 93 134 135 136 100 101 254 255 256 108 109 158 159 160 137 116 117 174 175 176 153 124 125 182 183 184 145 132 133 140 141 206 207 208 148 149 214 215 216 156 157 201 164 165 230 231 232 193 172 173 209 180 181 217 188 189 196 197 246 247 248 204 205 212 213 220 221 241 228 229 249 236 237 244 245 252 253:5 6 5 5 5 5 6 5 6 5 5 5 5 5 6 5 6 6 5 6 5 6 5 5,3 4 4 4 4 3 4 4 4 4 3 3 3 4 3 4 4 3 4 4 4 3 4 3 4 3 4 4 3 4 3 3 3 4 3 3> {(1, 123): 't3', (2, 184): 'tau1^-1', (1, 255): 't2^-1*tau3*t1*tau2^-1', (0, 61): 't3^-1', (0, 48): 'tau2^-1', (2, 176): 'tau1', (1, 251): 'tau1*t3^-1', (1, 119): 't1', (0, 181): 't3', (2, 40): 't2', (2, 56): 't3^-1', (2, 102): 't2', (1, 103): 'tau3', (0, 24): 't1^-1', (2, 152): 't3^-1', (0, 16): 't1^-1', (0, 189): 't3^-1', (2, 144): 't2', (1, 87): 'tau2^-1', (0, 149): 't2', (1, 75): 't2^-1', (0, 248): 't2^-1*tau3*t1*tau2^-1', (1, 243): 'tau1^-1*t3', (1, 71): 'tau3', (2, 253): 't2^-1', (1, 59): 't3^-1', (2, 255): 't2^-1', (2, 248): 'tau1*t3^-1', (0, 125): 't3', (1, 187): 'tau1^-1', (2, 245): 't2', (0, 240): 't2*tau3^-1*t1^-1*tau2', (2, 247): 't2', (2, 240): 'tau1^-1*t3', (1, 55): 'tau2^-1', (1, 247): 't2*tau3^-1*t1^-1*tau2', (0, 96): 'tau3', (2, 198): 't2^-1', (0, 101): 't2', (1, 31): 't1^-1', (0, 80): 'tau2^-1', (1, 147): 't2', (0, 64): 'tau3', (1, 211): 'tau1^-1'}