U-tiling: UQC3617
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc790 |
*2224 |
(3,4,2) |
{12,3,4} |
{3.5.3.3.5.3.3.5.3.3.5.3}{3.5.5}... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc1498
|
|
P4/mmm |
123 |
tetragonal |
{3,4,10} |
7 |
(3,4) |
G
|
False
|
|
sqc12298
|
|
I41/acd |
142 |
tetragonal |
{12,3,4} |
28 |
(3,5) |
D
|
False
|
|
sqc7403
|
|
P42/nnm |
134 |
tetragonal |
{4,12,3} |
14 |
(3,4) |
Topological data
Vertex degrees | {12,3,4} |
2D vertex symbol | {3.5.3.3.5.3.3.5.3.3.5.3}{3.5.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<69.1:256:17 3 5 7 96 25 11 13 15 112 19 21 23 120 27 29 31 144 49 35 37 39 128 65 43 45 47 152 51 53 55 168 81 59 61 63 160 67 69 71 200 97 75 77 79 136 83 85 87 208 113 91 93 95 99 101 103 176 137 107 109 111 115 117 119 161 123 125 127 169 131 133 135 139 141 143 193 147 149 151 201 155 157 159 163 165 167 171 173 175 225 179 181 183 224 233 187 189 191 216 195 197 199 203 205 207 241 211 213 215 249 219 221 223 227 229 231 256 235 237 239 248 243 245 247 251 253 255,2 19 92 6 8 10 27 108 14 16 18 116 22 24 26 140 30 32 34 51 124 38 40 42 67 148 46 48 50 164 54 56 58 83 156 62 64 66 196 70 72 74 99 132 78 80 82 204 86 88 90 115 94 96 98 172 102 104 106 139 110 112 114 118 120 122 163 126 128 130 171 134 136 138 142 144 146 195 150 152 154 203 158 160 162 166 168 170 174 176 178 227 220 182 184 186 235 212 190 192 194 198 200 202 206 208 210 243 214 216 218 251 222 224 226 252 230 232 234 244 238 240 242 246 248 250 254 256,33 4 5 22 23 16 41 12 13 30 31 49 20 21 32 65 28 29 36 37 54 55 64 44 45 70 71 80 52 53 88 185 60 61 86 87 68 69 104 217 76 77 102 103 233 84 85 129 92 93 118 119 112 249 100 101 153 108 109 142 143 169 116 117 144 177 124 125 166 167 160 132 133 174 175 152 201 140 141 209 148 149 198 199 156 157 206 207 225 164 165 208 172 173 200 180 181 230 231 216 188 189 238 239 224 241 196 197 204 205 212 213 246 247 220 221 254 255 228 229 248 236 237 256 244 245 252 253:3 5 3 5 5 5 3 5 3 5 5 3 5 5 3 5 5 3 5 3 3 3 3 3 3 5 3 5 3 3 5 5,12 3 4 12 3 12 12 3 4 3 4 3 3 3 4 3 3 4 3 4 3 3 3 4 3 4 3 3> {(2, 189): 't3^-1', (0, 56): 't3^-1', (1, 122): 't3', (2, 61): 't3^-1', (0, 224): 't3^-1', (2, 181): 't3', (2, 182): 't3', (2, 183): 'tau1', (0, 55): 'tau2^-1', (2, 191): 'tau1^-1', (2, 165): 't3^-1', (2, 166): 't3^-1', (1, 98): 't2', (1, 99): 'tau3', (2, 159): 't3^-1', (0, 31): 't1^-1', (2, 102): 't2', (2, 149): 't2', (2, 150): 't2', (1, 82): 't3', (0, 23): 't1^-1', (1, 203): 'tau2', (0, 184): 't3^-1', (1, 67): 'tau3', (2, 135): 't2^-1', (1, 115): 't1', (0, 120): 't3', (1, 186): 't3^-1', (2, 248): 't2^-1', (0, 255): 't2^-1*tau3*t1*tau2^-1', (1, 251): 't2^-1*tau3*t1*tau2^-1', (1, 51): 'tau2^-1', (2, 247): 'tau1^-1*t3', (2, 240): 't2', (0, 247): 't2*tau3^-1*t1^-1*tau2', (2, 238): 't3', (2, 239): 't3*tau1^-1', (2, 62): 't3^-1', (1, 243): 't2*tau3^-1*t1^-1*tau2', (2, 101): 't2', (0, 96): 't2', (0, 103): 'tau3', (1, 27): 't1^-1', (1, 194): 't2^-1', (0, 87): 'tau2^-1', (0, 71): 'tau3', (2, 47): 't2', (2, 63): 't3^-1', (1, 178): 't3', (0, 144): 't2'}