U-tiling: UQC369
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc476 |
*2224 |
(2,4,2) |
{4,3} |
{3.16.16.3}{3.16.16} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6855
|
|
I4/mmm |
139 |
tetragonal |
{3,4} |
16 |
(2,4) |
G
|
False
|
|
sqc11961
|
|
I41/acd |
142 |
tetragonal |
{3,4} |
32 |
(2,5) |
D
|
False
|
|
sqc1374
|
|
P42/mmc |
131 |
tetragonal |
{4,3} |
8 |
(2,4) |
Topological data
Vertex degrees | {4,3} |
2D vertex symbol | {3.16.16.3}{3.16.16} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<39.1:224:29 4 5 83 21 36 11 12 97 28 43 18 19 104 57 25 26 125 32 33 111 49 39 40 132 63 46 47 146 162 53 54 139 77 60 61 174 190 67 68 118 91 204 74 75 181 113 81 82 105 218 88 89 153 134 95 96 126 148 102 103 155 109 110 147 116 117 154 176 123 124 183 130 131 175 137 138 182 197 144 145 151 152 158 159 195 203 165 166 188 210 211 172 173 179 180 186 187 217 193 194 224 200 201 223 207 208 216 214 215 221 222,2 17 6 7 9 24 13 14 16 20 21 23 27 28 30 45 34 35 37 59 41 42 44 48 49 51 73 55 56 58 62 63 65 87 69 70 72 76 77 79 101 83 84 86 90 91 93 122 97 98 100 104 105 107 143 111 112 114 150 118 119 121 125 126 128 171 132 133 135 178 139 140 142 146 147 149 153 154 156 199 160 161 163 206 167 168 170 174 175 177 181 182 184 213 188 189 191 220 195 196 198 202 203 205 209 210 212 216 217 219 223 224,15 3 5 13 14 22 10 12 17 19 27 28 24 26 43 31 33 55 56 57 38 40 69 70 45 47 76 77 71 52 54 59 61 90 91 85 66 68 73 75 99 80 82 97 98 87 89 120 94 96 101 103 125 126 141 108 110 139 140 148 115 117 132 133 122 124 169 129 131 176 136 138 143 145 181 182 150 152 174 175 197 157 159 188 189 204 164 166 195 196 171 173 178 180 211 185 187 218 192 194 199 201 216 217 206 208 223 224 213 215 220 222:16 3 16 3 16 16 3 3 3 3 3 3 3 3 3 3 3 3 3 3,3 4 3 4 3 4 3 4 4 3 4 3 3 4 3 4 3 4 3 4 3 3 4 4 3 4 3 4 3 3 4 4> {(0, 146): 't3^-1', (0, 55): 't3^-1', (0, 173): 'tau3^-1', (2, 215): 'tau1^-1*t3', (1, 86): 't2', (0, 180): 'tau2', (1, 72): 't3', (2, 223): 'tau1*t3^-1', (0, 174): 't2^-1', (2, 55): 't3^-1', (2, 161): 't3^-1', (2, 111): 't3', (2, 166): 'tau1^-1', (2, 63): 't2^-1', (0, 152): 'tau3^-1', (2, 118): 't2^-1', (2, 154): 't3', (0, 222): 't2^-1*tau3*t1*tau2^-1', (2, 159): 'tau1', (2, 126): 't2', (1, 205): 't3', (2, 49): 't3^-1', (1, 170): 't2^-1', (2, 105): 't3', (2, 222): 'tau1*t3^-1', (0, 209): 't3', (0, 26): 't1^-1', (2, 54): 't3^-1', (2, 110): 't3', (0, 217): 't2^-1', (1, 107): 't3', (2, 117): 't2^-1', (0, 160): 't3', (1, 198): 't3^-1', (2, 41): 't2', (0, 19): 't1^-1', (0, 69): 't2^-1', (0, 145): 'tau2', (0, 168): 't2^-1', (2, 216): 'tau1^-1*t3', (2, 167): 'tau1^-1', (0, 215): 't2*tau3^-1*t1^-1*tau2', (2, 68): 't2^-1', (2, 188): 'tau1^-1', }