U-tiling: UQC370
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc476 |
*2224 |
(2,4,2) |
{4,3} |
{3.16.16.3}{3.16.16} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6856
|
|
I4/mmm |
139 |
tetragonal |
{4,3} |
16 |
(2,4) |
G
|
False
|
|
sqc11962
|
|
I41/acd |
142 |
tetragonal |
{3,4} |
32 |
(2,5) |
D
|
False
|
|
sqc1441
|
|
P42/mmc |
131 |
tetragonal |
{3,4} |
8 |
(2,4) |
Topological data
Vertex degrees | {4,3} |
2D vertex symbol | {3.16.16.3}{3.16.16} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<39.2:224:78 4 5 34 14 92 11 12 41 99 18 19 48 28 120 25 26 62 106 32 33 56 127 39 40 70 141 46 47 77 134 53 54 167 169 60 61 91 113 67 68 195 176 74 75 209 81 82 118 98 148 88 89 223 95 96 139 102 103 153 126 109 110 160 140 116 117 133 123 124 181 130 131 188 137 138 144 145 202 182 151 152 175 190 158 159 189 183 165 166 196 172 173 216 179 180 186 187 193 194 218 200 201 217 211 207 208 224 214 215 221 222,2 10 6 7 9 13 14 16 24 20 21 23 27 28 30 52 34 35 37 66 41 42 44 73 48 49 51 55 56 58 87 62 63 65 69 70 72 76 77 79 94 83 84 86 90 91 93 97 98 100 122 104 105 107 136 111 112 114 129 118 119 121 125 126 128 132 133 135 139 140 142 178 146 147 149 171 153 154 156 185 160 161 163 192 167 168 170 174 175 177 181 182 184 188 189 191 195 196 198 213 202 203 205 220 209 210 212 216 217 219 223 224,8 3 5 20 21 10 12 27 28 22 17 19 24 26 50 31 33 48 49 64 38 40 62 63 71 45 47 52 54 76 77 85 59 61 66 68 90 91 73 75 92 80 82 104 105 87 89 94 96 125 126 120 101 103 134 108 110 146 147 127 115 117 153 154 122 124 129 131 174 175 136 138 181 182 176 143 145 169 150 152 183 157 159 202 203 190 164 166 209 210 171 173 178 180 185 187 216 217 192 194 223 224 211 199 201 218 206 208 213 215 220 222:16 3 16 16 3 16 3 3 3 3 3 3 3 3 3 3 3 3 3 3,3 4 4 3 3 4 3 4 3 4 3 4 3 4 4 3 3 4 3 4 4 4 3 3 3 4 3 4 4 4 3 3> {(0, 41): 't2', (0, 223): 'tau1*t3^-1', (2, 210): 'tau1^-1*t3', (0, 55): 't3^-1', (1, 37): 't2', (0, 173): 't2^-1', (0, 140): 'tau2', (0, 216): 'tau1^-1*t3', (2, 28): 't3', (2, 182): 'tau1^-1', (2, 55): 't3^-1', (1, 191): 'tau1', (0, 188): 'tau1^-1', (2, 111): 't3', (2, 166): 't3^-1', (2, 63): 't2^-1', (0, 14): 't1^-1', (1, 114): 't2^-1', (2, 174): 't2^-1', (0, 222): 't2^-1', (2, 159): 't3', (2, 126): 't2', (2, 217): 'tau1*t3^-1', (2, 105): 't3', (2, 189): 'tau1', (2, 54): 't3^-1', (1, 184): 'tau1^-1', (2, 160): 't3', (0, 147): 'tau3^-1', (2, 90): 't2', (2, 110): 't3', (1, 219): 'tau1*t3^-1', (0, 217): 't2^-1*tau3*t1*tau2^-1', (1, 107): 't3', (0, 167): 'tau1^-1', (0, 210): 't2*tau3^-1*t1^-1*tau2', (2, 173): 't2^-1', (0, 175): 'tau2', (1, 212): 'tau1^-1*t3', (0, 168): 'tau3^-1', (0, 21): 't1^-1', (0, 139): 't3^-1', (2, 167): 't3^-1', (2, 68): 't2^-1', (1, 30): 't3', (0, 132): 't2', }