U-tiling: UQC3702
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc811 |
*2244 |
(3,4,2) |
{3,3,8} |
{12.5.12}{12.5.5}{5.5.5.5.5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7559
|
|
P4/nmm |
129 |
tetragonal |
{3,3,8} |
18 |
(3,4) |
G
|
False
|
|
sqc7499
|
|
I41/a |
88 |
tetragonal |
{3,3,8} |
18 |
(3,5) |
D
|
False
|
|
sqc7498
|
|
I41/amd |
141 |
tetragonal |
{3,3,8} |
18 |
(3,4) |
Topological data
Vertex degrees | {3,3,8} |
2D vertex symbol | {12.5.12}{12.5.5}{5.5.5.5.5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<60.1:128:49 3 5 7 16 57 11 13 15 65 19 21 23 40 81 27 29 31 48 89 35 37 39 73 43 45 47 51 53 55 64 59 61 63 67 69 71 96 75 77 79 88 83 85 87 91 93 95 121 99 101 103 120 113 107 109 111 128 115 117 119 123 125 127,2 19 12 6 8 10 27 14 16 18 36 22 24 26 44 30 32 34 107 38 40 42 123 46 48 50 75 60 54 56 58 91 62 64 66 99 92 70 72 74 84 78 80 82 115 86 88 90 94 96 98 116 102 104 106 124 110 112 114 118 120 122 126 128,9 4 5 22 23 56 12 13 30 31 64 33 20 21 72 41 28 29 88 36 37 110 111 96 44 45 126 127 80 57 52 53 78 79 60 61 94 95 89 68 69 102 103 81 76 77 84 85 118 119 92 93 113 100 101 128 121 108 109 120 116 117 124 125:12 5 12 5 5 5 5 5 5 5,3 3 8 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3> {(1, 123): 'tau1', (2, 63): 't1', (1, 115): 'tau1^-1', (2, 55): 't1', (2, 47): 't2^-1*tau3', (2, 40): 't2^-1', (0, 47): 't2^-1', (2, 39): 't3^-1*tau2^-1', (2, 32): 't3^-1', (0, 39): 't3^-1', (1, 91): 't3^-1', (2, 31): 'tau3*t2^-1', (1, 83): 't2', (2, 23): 'tau2^-1*t3^-1', (2, 127): 't2^-1*tau3*t1*tau2^-1*t3^-1', (2, 120): 'tau1', (0, 127): 'tau1', (2, 119): 't2*tau3^-1*t1^-1*tau2*t3', (2, 112): 'tau1^-1', (0, 119): 'tau1^-1', (1, 43): 't2^-1', (1, 35): 't3^-1', (2, 88): 't3^-1', (0, 95): 't3^-1', (2, 80): 't2', (0, 87): 't2'}