U-tiling: UQC3705
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc813 |
*2224 |
(3,4,2) |
{4,4,8} |
{3.5.5.3}{3.5.3.5}{5.5.5.5.5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7554
|
|
I4/mmm |
139 |
tetragonal |
{4,4,8} |
14 |
(3,4) |
G
|
False
|
|
sqc12302
|
|
I41/acd |
142 |
tetragonal |
{4,4,8} |
28 |
(3,5) |
D
|
False
|
|
sqc7523
|
|
P42/nnm |
134 |
tetragonal |
{8,4,4} |
14 |
(3,4) |
Topological data
Vertex degrees | {4,4,8} |
2D vertex symbol | {3.5.5.3}{3.5.3.5}{5.5.5.5.5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<74.1:256:17 3 5 7 16 25 11 13 15 19 21 23 32 27 29 31 49 35 37 39 64 65 43 45 47 80 51 53 55 88 81 59 61 63 67 69 71 104 97 75 77 79 83 85 87 113 91 93 95 112 99 101 103 137 107 109 111 115 117 119 144 161 123 125 127 160 169 131 133 135 152 139 141 143 193 147 149 151 201 155 157 159 163 165 167 208 171 173 175 200 225 179 181 183 216 233 187 189 191 224 195 197 199 203 205 207 241 211 213 215 249 219 221 223 227 229 231 248 235 237 239 256 243 245 247 251 253 255,2 19 6 13 8 10 27 14 16 18 22 29 24 26 30 32 34 51 38 61 40 42 67 46 77 48 50 54 85 56 58 83 62 64 66 70 101 72 74 99 78 80 82 86 88 90 115 94 109 96 98 102 104 106 139 110 112 114 118 141 120 122 163 126 157 128 130 171 134 149 136 138 142 144 146 195 150 152 154 203 158 160 162 166 205 168 170 174 197 176 178 227 182 213 184 186 235 190 221 192 194 198 200 202 206 208 210 243 214 216 218 251 222 224 226 230 245 232 234 238 253 240 242 246 248 250 254 256,33 4 5 38 39 96 41 12 13 46 47 112 49 20 21 54 55 120 65 28 29 70 71 144 36 37 128 44 45 152 52 53 168 185 60 61 190 191 160 68 69 200 217 76 77 222 223 136 233 84 85 238 239 208 129 92 93 134 135 249 100 101 254 255 176 153 108 109 158 159 169 116 117 174 175 177 124 125 182 183 132 133 201 140 141 206 207 209 148 149 214 215 156 157 225 164 165 230 231 172 173 180 181 224 188 189 216 241 196 197 246 247 204 205 212 213 220 221 228 229 256 236 237 248 244 245 252 253:3 5 3 5 3 5 3 5 5 3 5 3 3 5 3 5 3 5 3 5 3 3 5 5 3 5 3 5 3 3 5 5,4 4 8 4 8 4 8 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 56): 't3^-1', (1, 122): 't3', (0, 63): 't3^-1', (0, 176): 't3', (2, 55): 'tau2^-1', (0, 183): 'tau1', (0, 127): 't3', (0, 151): 't2', (1, 234): 't3', (0, 47): 't2', (0, 160): 't3^-1', (1, 226): 't3^-1', (1, 124): 't3', (2, 102): 't2', (1, 60): 't3^-1', (0, 191): 'tau1^-1', (2, 31): 't1^-1', (1, 220): 'tau1', (0, 144): 't2', (1, 82): 't3', (1, 212): 'tau1^-1', (1, 228): 't3^-1*tau1', (1, 74): 't2^-1', (1, 76): 't2^-1', (0, 184): 't3^-1', (1, 194): 't2^-1', (2, 253): 't2^-1', (2, 231): 'tau2*t1^-1*tau3^-1*t2', (2, 248): 't2^-1', (0, 255): 'tau1*t3^-1', (2, 245): 't2', (2, 240): 't2', (0, 247): 'tau1^-1*t3', (2, 23): 't1^-1', (2, 239): 'tau2^-1*t1*tau3*t2^-1', (0, 96): 't2', (2, 103): 'tau3', (2, 87): 'tau2^-1', (1, 148): 't2', (2, 198): 't2^-1', (2, 199): 'tau3^-1', (1, 236): 't3*tau1^-1'}