U-tiling: UQC3709
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc816 |
*2224 |
(3,4,2) |
{4,8,4} |
{3.5.5.3}{3.5.3.5.3.5.3.5}{5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7921
|
|
I4/mmm |
139 |
tetragonal |
{4,4,8} |
14 |
(3,4) |
G
|
False
|
|
sqc12384
|
|
I41/acd |
142 |
tetragonal |
{4,8,4} |
28 |
(3,5) |
D
|
False
|
|
sqc7920
|
|
P42/nnm |
134 |
tetragonal |
{4,4,8} |
14 |
(3,4) |
Topological data
Vertex degrees | {4,8,4} |
2D vertex symbol | {3.5.5.3}{3.5.3.5.3.5.3.5}{5.5.5.5} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<75.1:256:89 3 5 7 40 105 11 13 15 48 113 19 21 23 56 137 27 29 31 72 121 35 37 39 145 43 45 47 161 51 53 55 153 59 61 63 192 193 67 69 71 129 75 77 79 224 201 83 85 87 240 91 93 95 136 169 99 101 103 256 107 109 111 160 115 117 119 176 123 125 127 184 131 133 135 139 141 143 208 147 149 151 216 155 157 159 163 165 167 232 171 173 175 217 179 181 183 209 187 189 191 195 197 199 248 203 205 207 211 213 215 219 221 223 249 227 229 231 241 235 237 239 243 245 247 251 253 255,2 91 6 37 8 10 107 14 45 16 18 115 22 53 24 26 139 30 69 32 34 123 38 40 42 147 46 48 50 163 54 56 58 155 62 189 64 66 195 70 72 74 131 78 221 80 82 203 86 237 88 90 94 133 96 98 171 102 253 104 106 110 157 112 114 118 173 120 122 126 181 128 130 134 136 138 142 205 144 146 150 213 152 154 158 160 162 166 229 168 170 174 176 178 219 182 184 186 211 190 192 194 198 245 200 202 206 208 210 214 216 218 222 224 226 251 230 232 234 243 238 240 242 246 248 250 254 256,9 4 5 14 15 24 12 13 32 25 20 21 30 31 28 29 57 36 37 62 63 56 73 44 45 78 79 72 81 52 53 86 87 60 61 88 97 68 69 102 103 76 77 104 84 85 105 92 93 110 111 120 100 101 108 109 144 137 116 117 142 143 153 124 125 158 159 168 145 132 133 150 151 176 140 141 148 149 200 156 157 208 201 164 165 206 207 193 172 173 198 199 209 180 181 214 215 232 217 188 189 222 223 240 196 197 204 205 212 213 248 220 221 256 241 228 229 246 247 249 236 237 254 255 244 245 252 253:3 5 3 5 3 5 3 5 3 3 3 3 5 3 3 5 3 5 5 3 5 5 5 5 5 5 5 3 3 5 3 3,4 8 4 8 4 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 189): 'tau1^-1', (2, 190): 'tau1^-1', (2, 191): 't3^-1', (2, 184): 'tau1^-1', (2, 61): 't3^-1', (2, 181): 'tau1', (2, 182): 'tau1', (2, 183): 't3', (2, 176): 'tau1', (2, 62): 't3^-1', (2, 45): 't2', (2, 46): 't2', (2, 63): 't3^-1', (2, 40): 't2', (2, 56): 't3^-1', (1, 98): 'tau3', (1, 100): 't2', (2, 157): 't3^-1', (0, 24): 't1^-1', (1, 226): 'tau2*t1^-1*tau3^-1*t2', (2, 152): 't3^-1', (2, 149): 't2', (0, 16): 't1^-1', (1, 82): 'tau2^-1', (2, 144): 't2', (0, 248): 't2^-1*tau3*t1*tau2^-1', (2, 134): 't2^-1', (1, 66): 'tau3', (0, 48): 'tau2^-1', (2, 167): 't3^-1', (2, 253): 'tau1*t3^-1', (2, 254): 'tau1*t3^-1', (1, 114): 't1', (2, 248): 'tau1*t3^-1', (2, 245): 'tau1^-1*t3', (0, 240): 't2*tau3^-1*t1^-1*tau2', (1, 50): 'tau2^-1', (2, 240): 'tau1^-1*t3', (0, 247): 't2', (1, 242): 't2*tau3^-1*t1^-1*tau2', (2, 126): 't3', (2, 230): 't3^-1*tau1', (2, 103): 't2', (0, 103): 't2', (1, 26): 't1^-1', (0, 80): 'tau2^-1', (0, 168): 'tau3^-1', (1, 196): 't2^-1', (0, 64): 'tau3', (2, 199): 't2^-1'}