U-tiling: UQC373
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc477 |
*22222 |
(2,4,2) |
{4,6} |
{6.4.4.6}{6.4.4.6.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc6513
|
|
P4/mmm |
123 |
tetragonal |
{4,6} |
12 |
(2,4) |
G
|
False
|
|
sqc6626
|
|
I4122 |
98 |
tetragonal |
{4,6} |
12 |
(2,5) |
D
|
False
|
|
sqc1296
|
|
P42/mcm |
132 |
tetragonal |
{6,4} |
6 |
(2,4) |
Topological data
Vertex degrees | {4,6} |
2D vertex symbol | {6.4.4.6}{6.4.4.6.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<14.3:112:64 3 5 13 14 50 10 12 78 17 19 27 28 71 24 26 92 31 33 55 56 85 38 40 69 70 106 45 47 76 77 52 54 99 59 61 83 84 66 68 73 75 80 82 87 89 97 98 94 96 101 103 111 112 108 110,2 31 6 7 9 38 13 14 16 45 20 21 23 59 27 28 30 34 35 37 41 42 44 48 49 51 87 55 56 58 62 63 65 94 69 70 72 101 76 77 79 108 83 84 86 90 91 93 97 98 100 104 105 107 111 112,15 4 5 20 21 22 11 12 27 28 18 19 25 26 43 32 33 48 49 57 39 40 62 63 46 47 71 53 54 76 77 60 61 78 67 68 83 84 74 75 81 82 99 88 89 104 105 106 95 96 111 112 102 103 109 110:6 4 6 6 4 6 4 4 4 4 4 4,4 6 4 6 4 4 4 6 4 6 4 4> {(2, 61): 'tau3*t2^-1', (0, 56): 't1^-1', (0, 62): 'tau3', (0, 61): 'tau3', (0, 48): 'tau2^-1', (2, 55): 't3^-1*tau2^-1', (0, 54): 't3^-1', (0, 55): 't3^-1', (0, 40): 't2', (0, 41): 't2', (0, 47): 'tau2^-1', (2, 42): 'tau2^-1*t3^-1', (2, 56): 'tau3*t2^-1', (2, 33): 't3*tau2', (0, 27): 't1', (0, 97): 'tau1', (2, 27): 't1', (0, 19): 't1^-1', (2, 19): 't1^-1', (2, 14): 't1^-1', (0, 14): 't1^-1', (1, 79): 't1', (1, 58): 't1^-1', (2, 110): 'tau2^-1*t3^-1', (0, 110): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 105): 'tau2^-1*t3^-1', (0, 96): 'tau1', (2, 103): 't1*tau3*t2^-1', (2, 97): 't2^-1*tau3*t1', (2, 90): 't3^-1*tau2^-1', (2, 84): 't2*tau3^-1*t1^-1', (0, 104): 'tau2*t3*tau1^-1*t2^-1*tau3*t1', (2, 69): 't2^-1*tau3'}