U-tiling: UQC3780
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc828 |
*2224 |
(3,4,2) |
{8,3,3} |
{6.6.6.6.6.6.6.6}{6.4.6}{6.6.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7558
|
|
I4/mmm |
139 |
tetragonal |
{3,3,8} |
18 |
(3,4) |
G
|
False
|
|
sqc12308
|
|
I41/acd |
142 |
tetragonal |
{8,3,3} |
36 |
(3,5) |
D
|
False
|
|
sqc7521
|
|
P42/nnm |
134 |
tetragonal |
{3,3,8} |
18 |
(3,4) |
Topological data
Vertex degrees | {8,3,3} |
2D vertex symbol | {6.6.6.6.6.6.6.6}{6.4.6}{6.6.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<76.2:256:9 3 5 7 16 11 13 15 25 19 21 23 32 27 29 31 57 35 37 39 64 73 43 45 47 80 81 51 53 55 88 59 61 63 97 67 69 71 104 75 77 79 83 85 87 105 91 93 95 112 99 101 103 107 109 111 137 115 117 119 144 153 123 125 127 160 145 131 133 135 152 139 141 143 147 149 151 155 157 159 201 163 165 167 208 193 171 173 175 200 209 179 181 183 216 217 187 189 191 224 195 197 199 203 205 207 211 213 215 219 221 223 241 227 229 231 248 249 235 237 239 256 243 245 247 251 253 255,2 4 8 38 23 10 12 16 46 31 18 20 24 54 26 28 32 70 34 36 40 55 42 44 48 71 50 52 56 58 60 64 190 87 66 68 72 74 76 80 222 103 82 84 88 238 90 92 96 134 119 98 100 104 254 106 108 112 158 143 114 116 120 174 122 124 128 182 167 130 132 136 175 138 140 144 206 146 148 152 214 199 154 156 160 207 162 164 168 230 170 172 176 178 180 184 231 186 188 192 239 194 196 200 246 202 204 208 210 212 216 247 218 220 224 255 226 228 232 234 236 240 242 244 248 250 252 256,89 34 35 6 7 24 105 42 43 14 15 32 113 50 51 22 23 137 66 67 30 31 121 38 39 56 145 46 47 72 161 54 55 153 186 187 62 63 88 193 70 71 129 218 219 78 79 104 201 234 235 86 87 130 131 94 95 120 169 250 251 102 103 154 155 110 111 144 170 171 118 119 178 179 126 127 168 134 135 176 202 203 142 143 210 211 150 151 200 158 159 208 226 227 166 167 174 175 217 182 183 232 209 190 191 240 242 243 198 199 206 207 214 215 248 222 223 256 249 230 231 241 238 239 246 247 254 255:6 4 4 6 6 6 6 4 6 4 6 4 4 6 6 4 6 4 6 6 6 6 6 6,8 3 3 8 3 3 8 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3> {(0, 184): 'tau1^-1', (2, 63): 't3^-1', (1, 253): 't2^-1', (0, 191): 'tau1^-1', (1, 126): 't3', (0, 176): 'tau1', (2, 183): 't3', (2, 48): 'tau2^-1', (0, 183): 'tau1', (0, 40): 't2', (2, 191): 't3^-1', (2, 168): 'tau3^-1', (0, 47): 't2', (1, 238): 't3', (0, 32): 't3', (2, 167): 't3^-1', (0, 39): 't3', (0, 152): 't3^-1', (2, 24): 't1^-1', (0, 159): 't3^-1', (0, 144): 't2', (2, 151): 't2', (2, 16): 't1^-1', (0, 151): 't2', (1, 86): 't3', (1, 78): 't2^-1', (1, 197): 't2^-1', (1, 198): 't2^-1', (0, 248): 'tau1*t3^-1', (2, 248): 't2^-1*tau3*t1*tau2^-1', (0, 255): 'tau1*t3^-1', (2, 250): 't2^-1', (2, 240): 't2*tau3^-1*t1^-1*tau2', (2, 241): 't2', (2, 242): 't2', (0, 247): 'tau1^-1*t3', (0, 224): 't3^-1*tau1', (1, 182): 't3', (2, 97): 't2', (2, 80): 'tau2^-1', (2, 79): 't2^-1', (2, 192): 'tau3^-1'}