U-tiling: UQC3782
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc830 |
*2224 |
(3,4,2) |
{4,3,3} |
{6.6.6.6}{6.8.6}{6.6.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc8150
|
|
I4/mmm |
139 |
tetragonal |
{3,3,4} |
20 |
(3,4) |
G
|
False
|
|
sqc12464
|
|
I41/acd |
142 |
tetragonal |
{4,3,3} |
40 |
(3,5) |
D
|
False
|
|
sqc7801
|
|
P42/nnm |
134 |
tetragonal |
{3,4,3} |
20 |
(3,4) |
Topological data
Vertex degrees | {4,3,3} |
2D vertex symbol | {6.6.6.6}{6.8.6}{6.6.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<77.1:256:9 3 5 7 16 11 13 15 25 19 21 23 32 27 29 31 57 35 37 39 64 73 43 45 47 80 81 51 53 55 88 59 61 63 97 67 69 71 104 75 77 79 83 85 87 105 91 93 95 112 99 101 103 107 109 111 137 115 117 119 144 153 123 125 127 160 145 131 133 135 152 139 141 143 147 149 151 155 157 159 201 163 165 167 208 193 171 173 175 200 209 179 181 183 216 217 187 189 191 224 195 197 199 203 205 207 211 213 215 219 221 223 241 227 229 231 248 249 235 237 239 256 243 245 247 251 253 255,2 4 8 38 95 10 12 16 46 111 18 20 24 54 119 26 28 32 70 143 34 36 40 127 42 44 48 151 50 52 56 167 58 60 64 190 159 66 68 72 199 74 76 80 222 135 82 84 88 238 207 90 92 96 134 98 100 104 254 175 106 108 112 158 114 116 120 174 122 124 128 182 130 132 136 138 140 144 206 146 148 152 214 154 156 160 162 164 168 230 170 172 176 178 180 184 223 186 188 192 215 194 196 200 246 202 204 208 210 212 216 218 220 224 226 228 232 255 234 236 240 247 242 244 248 250 252 256,17 34 35 6 7 96 25 42 43 14 15 112 50 51 22 23 120 66 67 30 31 144 49 38 39 128 65 46 47 152 54 55 168 81 186 187 62 63 160 70 71 200 97 218 219 78 79 136 234 235 86 87 208 113 130 131 94 95 250 251 102 103 176 137 154 155 110 111 170 171 118 119 161 178 179 126 127 169 134 135 202 203 142 143 193 210 211 150 151 201 158 159 226 227 166 167 174 175 225 182 183 224 233 190 191 216 242 243 198 199 206 207 241 214 215 249 222 223 230 231 256 238 239 248 246 247 254 255:6 8 8 6 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6,4 3 3 4 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 4 3 3 3 4 3 3 4 3 3 4 3 3 3 3 3 3 3> {(0, 183): 'tau1', (0, 56): 't3^-1', (2, 184): 't3^-1', (0, 63): 't3^-1', (1, 254): 't2^-1*tau3*t1*tau2^-1', (0, 176): 'tau1', (2, 176): 't3', (0, 184): 'tau1^-1', (1, 118): 't1', (0, 191): 'tau1^-1', (0, 40): 't2', (2, 175): 'tau3^-1', (0, 47): 't2', (2, 56): 't3^-1', (2, 167): 'tau2', (1, 101): 't2', (0, 247): 'tau1^-1*t3', (1, 102): 'tau3', (2, 160): 't3^-1', (0, 144): 't2', (2, 23): 't1^-1', (2, 144): 't2', (0, 151): 't2', (1, 86): 'tau2^-1', (2, 143): 't1', (0, 248): 'tau1*t3^-1', (1, 70): 'tau3', (0, 120): 't3', (2, 255): 't2^-1*tau3*t1*tau2^-1', (0, 127): 't3', (2, 250): 't2^-1', (1, 245): 't2', (0, 240): 'tau1^-1*t3', (2, 247): 't2*tau3^-1*t1^-1*tau2', (2, 241): 't2', (2, 242): 't2', (1, 54): 'tau2^-1', (0, 255): 'tau1*t3^-1', (1, 246): 't2*tau3^-1*t1^-1*tau2', (2, 96): 't2', (2, 97): 't2', (1, 30): 't1^-1', (2, 207): 'tau2', (2, 199): 'tau3^-1'}