U-tiling: UQC3783
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc830 |
*2224 |
(3,4,2) |
{4,3,3} |
{6.6.6.6}{6.8.6}{6.6.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7856
|
|
I4/mmm |
139 |
tetragonal |
{3,4,3} |
20 |
(3,4) |
G
|
False
|
|
sqc12351
|
|
I41/acd |
142 |
tetragonal |
{4,3,3} |
40 |
(3,5) |
D
|
False
|
|
sqc7802
|
|
P42/nnm |
134 |
tetragonal |
{4,3,3} |
20 |
(3,4) |
Topological data
Vertex degrees | {4,3,3} |
2D vertex symbol | {6.6.6.6}{6.8.6}{6.6.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<77.2:256:17 3 5 7 24 25 11 13 15 32 19 21 23 27 29 31 49 35 37 39 56 65 43 45 47 72 51 53 55 81 59 61 63 88 67 69 71 97 75 77 79 104 83 85 87 113 91 93 95 120 99 101 103 137 107 109 111 144 115 117 119 161 123 125 127 168 169 131 133 135 176 139 141 143 193 147 149 151 200 201 155 157 159 208 163 165 167 171 173 175 225 179 181 183 232 233 187 189 191 240 195 197 199 203 205 207 241 211 213 215 248 249 219 221 223 256 227 229 231 235 237 239 243 245 247 251 253 255,2 4 8 94 39 10 12 16 110 47 18 20 24 118 55 26 28 32 142 71 34 36 40 126 42 44 48 150 50 52 56 166 58 60 64 158 191 66 68 72 198 74 76 80 134 223 82 84 88 206 239 90 92 96 135 98 100 104 174 255 106 108 112 159 114 116 120 175 122 124 128 183 130 132 136 138 140 144 207 146 148 152 215 154 156 160 162 164 168 231 170 172 176 178 180 184 222 186 188 192 214 194 196 200 247 202 204 208 210 212 216 218 220 224 226 228 232 254 234 236 240 246 242 244 248 250 252 256,9 90 91 6 7 40 106 107 14 15 48 25 114 115 22 23 56 138 139 30 31 72 57 122 123 38 39 73 146 147 46 47 81 162 163 54 55 154 155 62 63 192 97 194 195 70 71 130 131 78 79 224 202 203 86 87 240 105 94 95 136 170 171 102 103 256 110 111 160 137 118 119 176 153 126 127 184 145 134 135 142 143 208 150 151 216 158 159 201 166 167 232 193 174 175 209 218 219 182 183 217 210 211 190 191 198 199 248 206 207 214 215 222 223 241 250 251 230 231 249 242 243 238 239 246 247 254 255:6 8 6 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6,4 3 3 3 3 4 3 3 3 3 4 3 4 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3> {(0, 56): 't3^-1', (2, 184): 'tau1^-1', (0, 63): 't3^-1', (0, 176): 't3', (2, 176): 'tau1', (0, 184): 't3^-1', (1, 246): 't2', (0, 191): 't3^-1', (2, 40): 't2', (2, 169): 'tau3^-1', (2, 170): 'tau3^-1', (2, 56): 't3^-1', (1, 101): 'tau3', (2, 161): 'tau2', (2, 162): 'tau2', (1, 102): 't2', (2, 152): 't3^-1', (0, 144): 't2', (2, 144): 't2', (0, 151): 't2', (2, 18): 't1^-1', (2, 225): 'tau2*t1^-1*tau3^-1*t2', (1, 205): 'tau2', (2, 137): 't1', (2, 138): 't1', (1, 69): 'tau3', (0, 120): 't3', (2, 255): 't2^-1', (2, 248): 'tau1*t3^-1', (0, 127): 't3', (2, 250): 't2^-1*tau3*t1*tau2^-1', (1, 117): 't1', (2, 247): 't2', (2, 240): 'tau1^-1*t3', (2, 241): 't2*tau3^-1*t1^-1*tau2', (2, 242): 't2*tau3^-1*t1^-1*tau2', (1, 253): 't2^-1*tau3*t1*tau2^-1', (0, 96): 't2', (1, 165): 'tau2', (0, 103): 't2', (2, 17): 't1^-1', (0, 231): 't3^-1', (1, 29): 't1^-1', (1, 245): 't2*tau3^-1*t1^-1*tau2', (2, 201): 'tau2', (2, 202): 'tau2', (2, 193): 'tau3^-1', (2, 194): 'tau3^-1'}