U-tiling: UQC3805
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc836 |
*2224 |
(3,4,2) |
{3,8,4} |
{4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7907
|
|
I4/mmm |
139 |
tetragonal |
{3,8,4} |
14 |
(3,4) |
G
|
False
|
|
sqc12366
|
|
I41/acd |
142 |
tetragonal |
{3,8,4} |
28 |
(3,5) |
D
|
False
|
|
sqc7908
|
|
P42/nnm |
134 |
tetragonal |
{8,3,4} |
14 |
(3,4) |
Topological data
Vertex degrees | {3,8,4} |
2D vertex symbol | {4.4.4}{4.4.4.4.4.4.4.4}{4.4.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<78.1:256:17 3 5 7 24 25 11 13 15 32 19 21 23 27 29 31 49 35 37 39 56 65 43 45 47 72 51 53 55 81 59 61 63 88 67 69 71 97 75 77 79 104 83 85 87 113 91 93 95 120 99 101 103 137 107 109 111 144 115 117 119 161 123 125 127 168 169 131 133 135 176 139 141 143 193 147 149 151 200 201 155 157 159 208 163 165 167 171 173 175 225 179 181 183 232 233 187 189 191 240 195 197 199 203 205 207 241 211 213 215 248 249 219 221 223 256 227 229 231 235 237 239 243 245 247 251 253 255,2 8 36 6 39 10 16 44 14 47 18 24 52 22 55 26 32 68 30 71 34 40 38 42 48 46 50 56 54 58 64 188 62 191 66 72 70 74 80 220 78 223 82 88 236 86 239 90 96 132 94 135 98 104 252 102 255 106 112 156 110 159 114 120 172 118 175 122 128 180 126 183 130 136 134 138 144 204 142 207 146 152 212 150 215 154 160 158 162 168 228 166 231 170 176 174 178 184 182 186 192 190 194 200 244 198 247 202 208 206 210 216 214 218 224 222 226 232 230 234 240 238 242 248 246 250 256 254,33 4 5 94 95 16 41 12 13 110 111 49 20 21 118 119 32 65 28 29 142 143 36 37 126 127 64 44 45 150 151 80 52 53 166 167 88 185 60 61 158 159 68 69 198 199 104 217 76 77 134 135 233 84 85 206 207 129 92 93 112 249 100 101 174 175 153 108 109 169 116 117 144 177 124 125 160 132 133 152 201 140 141 209 148 149 156 157 225 164 165 208 172 173 200 180 181 222 223 216 188 189 214 215 224 241 196 197 204 205 212 213 220 221 228 229 254 255 248 236 237 246 247 256 244 245 252 253:4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4,3 8 4 3 4 3 8 4 3 4 8 8 8 3 8 3 3 3 3 3 3 3 3 3 3 8 3 8> {(0, 56): 't3^-1', (2, 191): 'tau1^-1', (0, 63): 't3^-1', (1, 254): 't2^-1', (2, 53): 'tau2^-1', (2, 54): 'tau2^-1', (2, 183): 'tau1', (1, 251): 't2^-1', (1, 246): 't2', (2, 173): 'tau3^-1', (2, 174): 'tau3^-1', (2, 47): 't2', (0, 160): 't3^-1', (2, 39): 't3', (0, 96): 't2', (0, 191): 't3^-1', (2, 29): 't1^-1', (2, 30): 't1^-1', (2, 159): 't3^-1', (2, 21): 't1^-1', (2, 22): 't1^-1', (0, 151): 't2', (0, 167): 't3^-1', (0, 184): 't3^-1', (1, 195): 't2^-1', (2, 135): 't2^-1', (2, 253): 't2^-1*tau3*t1*tau2^-1', (2, 254): 't2^-1*tau3*t1*tau2^-1', (2, 248): 't2^-1', (2, 245): 't2*tau3^-1*t1^-1*tau2', (2, 246): 't2*tau3^-1*t1^-1*tau2', (2, 247): 'tau1^-1*t3', (2, 240): 't2', (0, 183): 't3', (2, 239): 't3*tau1^-1', (0, 224): 't3^-1', (0, 103): 't2', (2, 198): 'tau3^-1', (2, 85): 'tau2^-1', (2, 86): 'tau2^-1', (2, 197): 'tau3^-1', (0, 192): 't2^-1'}