U-tiling: UQC3831
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc881 |
*2224 |
(3,3,2) |
{6,12,4} |
{4.3.3.4.3.3}{4.3.3.4.3.3.4.3.3.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc1841
|
|
P4/mmm |
123 |
tetragonal |
{12,6,4} |
5 |
(3,3) |
G
|
False
|
|
sqc12367
|
|
I41/acd |
142 |
tetragonal |
{6,12,4} |
20 |
(3,4) |
D
|
False
|
|
sqc7620
|
|
P42/nnm |
134 |
tetragonal |
{12,6,4} |
10 |
(3,3) |
Topological data
Vertex degrees | {6,12,4} |
2D vertex symbol | {4.3.3.4.3.3}{4.3.3.4.3.3.4.3.3.4.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<2.1:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,17 34 5 8 7 25 42 13 16 15 50 21 24 23 66 29 32 31 49 37 40 39 65 45 48 47 53 56 55 81 186 61 64 63 69 72 71 97 218 77 80 79 234 85 88 87 113 130 93 96 95 250 101 104 103 137 154 109 112 111 170 117 120 119 161 178 125 128 127 169 133 136 135 202 141 144 143 193 210 149 152 151 201 157 160 159 226 165 168 167 173 176 175 225 181 184 183 233 189 192 191 242 197 200 199 205 208 207 241 213 216 215 249 221 224 223 229 232 231 237 240 239 245 248 247 253 256 255,3 4 13 14 95 96 11 12 111 112 19 20 29 30 119 120 27 28 143 144 35 36 61 62 127 128 43 44 77 78 151 152 51 52 85 86 167 168 59 60 159 160 67 68 101 102 199 200 75 76 135 136 83 84 207 208 91 92 109 110 99 100 175 176 107 108 115 116 141 142 123 124 157 158 131 132 149 150 139 140 147 148 155 156 163 164 205 206 171 172 197 198 179 180 213 214 223 224 187 188 221 222 215 216 195 196 203 204 211 212 219 220 227 228 245 246 255 256 235 236 253 254 247 248 243 244 251 252:4 3 4 3 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3,6 12 4 12 12 4 12 6 4 6 4 4 4 6 6 6 6 4 6 4> {(2, 188): 'tau1^-1', (1, 120): 't3', (2, 61): 't3^-1', (2, 180): 'tau1', (2, 181): 'tau1', (2, 54): 'tau2^-1', (2, 55): 'tau2^-1', (2, 44): 't2', (2, 45): 't2', (2, 174): 'tau3^-1', (2, 175): 'tau3^-1', (1, 97): 't2', (1, 96): 't2', (2, 60): 't3^-1', (2, 156): 't3^-1', (2, 157): 't3^-1', (2, 30): 't1^-1', (2, 31): 't1^-1', (2, 148): 't2', (2, 149): 't2', (1, 184): 't3^-1', (2, 23): 't1^-1', (2, 189): 'tau1^-1', (1, 193): 't2^-1', (2, 118): 't1', (1, 56): 't3^-1', (2, 254): 't2^-1*tau3*t1*tau2^-1', (2, 255): 't2^-1*tau3*t1*tau2^-1', (2, 244): 'tau1^-1*t3', (1, 176): 't3', (2, 246): 't2*tau3^-1*t1^-1*tau2', (2, 236): 't3*tau1^-1', (2, 237): 't3*tau1^-1', (2, 239): 'tau2^-1*t1*tau3*t2^-1', (2, 229): 't3^-1*tau1', (1, 144): 't2', (2, 86): 'tau2^-1', (2, 87): 'tau2^-1', (2, 70): 'tau3', (2, 71): 'tau3'}