U-tiling: UQC3840
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc83 |
*248 |
(2,2,2) |
{6,4} |
{8.3.3.8.3.3}{3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7938
|
|
I4/mmm |
139 |
tetragonal |
{6,6,4} |
12 |
(3,3) |
G
|
False
|
|
sqc12401
|
|
I41/acd |
142 |
tetragonal |
{6,6,4} |
24 |
(3,4) |
D
|
False
|
|
sqc1992
|
|
P42/mmc |
131 |
tetragonal |
{4,6,6} |
6 |
(3,3) |
Topological data
Vertex degrees | {6,6,4} |
2D vertex symbol | {8.3.3.8.3.3}{8.3.3.8.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<3.1:256:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256,33 90 5 8 7 41 106 13 16 15 49 114 21 24 23 65 138 29 32 31 122 37 40 39 146 45 48 47 162 53 56 55 185 154 61 64 63 194 69 72 71 217 130 77 80 79 233 202 85 88 87 129 93 96 95 249 170 101 104 103 153 109 112 111 169 117 120 119 177 125 128 127 133 136 135 201 141 144 143 209 149 152 151 157 160 159 225 165 168 167 173 176 175 218 181 184 183 210 189 192 191 241 197 200 199 205 208 207 213 216 215 221 224 223 250 229 232 231 242 237 240 239 245 248 247 253 256 255,3 4 21 22 15 16 11 12 29 30 19 20 31 32 27 28 35 36 53 54 63 64 43 44 69 70 79 80 51 52 87 88 59 60 85 86 67 68 103 104 75 76 101 102 83 84 91 92 117 118 111 112 99 100 107 108 141 142 115 116 143 144 123 124 165 166 159 160 131 132 173 174 151 152 139 140 147 148 197 198 155 156 205 206 163 164 207 208 171 172 199 200 179 180 229 230 215 216 187 188 237 238 223 224 195 196 203 204 211 212 245 246 219 220 253 254 227 228 247 248 235 236 255 256 243 244 251 252:8 3 8 3 8 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,6 6 4 6 6 6 4 6 4 6 6 6 6 6 4 6 6 4 4 6 6 4 4 6> {(2, 60): 't3^-1', (2, 61): 't3^-1', (2, 190): 'tau1^-1', (2, 191): 'tau1^-1', (2, 189): 't3^-1', (2, 180): 't3', (2, 181): 't3', (2, 182): 'tau1', (2, 183): 'tau1', (2, 62): 't3^-1', (1, 233): 'tau2^-1*t1*tau3*t2^-1', (1, 97): 'tau3', (2, 46): 't2', (2, 47): 't2', (2, 188): 't3^-1', (2, 165): 't3^-1', (1, 225): 'tau2*t1^-1*tau3^-1*t2', (1, 96): 't2', (2, 39): 't3', (2, 76): 't2^-1', (2, 158): 't3^-1', (2, 159): 't3^-1', (2, 148): 't2', (2, 149): 't2', (2, 150): 't2', (2, 151): 't2', (1, 201): 'tau2', (1, 113): 't1', (1, 65): 'tau3', (1, 192): 't2^-1', (2, 124): 't3', (1, 49): 'tau2^-1', (2, 246): 'tau1^-1*t3', (2, 247): 'tau1^-1*t3', (2, 238): 't3*tau1^-1', (2, 239): 't3*tau1^-1', (1, 137): 't1', (2, 77): 't2^-1'}