U-tiling: UQC3972
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1118 |
*22222 |
(3,5,2) |
{3,4,4} |
{12.3.12}{12.12.3.3}{12.12.12.12} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc8360
|
|
P4/mmm |
123 |
tetragonal |
{3,4,3} |
20 |
(3,5) |
G
|
False
|
|
sqc8813
|
|
I4122 |
98 |
tetragonal |
{3,4,4} |
20 |
(3,6) |
D
|
False
|
|
sqc2509
|
|
P4222 |
93 |
tetragonal |
{4,3,4} |
10 |
(3,5) |
Topological data
Vertex degrees | {3,4,4} |
2D vertex symbol | {12.3.12}{12.12.3.3}{12.12.12.12} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<43.4:144:19 3 5 15 8 90 28 12 14 17 72 21 23 33 26 108 30 32 35 99 55 39 41 69 44 126 73 48 50 87 53 117 57 59 96 62 144 91 66 68 71 75 77 105 80 135 100 84 86 89 93 95 98 102 104 107 127 111 113 123 116 136 120 122 125 129 131 141 134 138 140 143,2 7 13 6 9 11 16 15 18 20 25 31 24 27 29 34 33 36 38 43 67 42 45 47 52 85 51 54 56 61 94 60 63 65 70 69 72 74 79 103 78 81 83 88 87 90 92 97 96 99 101 106 105 108 110 115 121 114 117 119 124 123 126 128 133 139 132 135 137 142 141 144,10 4 5 24 25 26 45 13 14 33 34 35 54 28 22 23 63 31 32 81 64 40 41 60 61 62 82 49 50 78 79 80 91 58 59 67 68 96 97 98 117 100 76 77 85 86 105 106 107 126 94 95 135 103 104 144 118 112 113 132 133 134 121 122 141 142 143 136 130 131 139 140:12 3 12 3 12 3 12 3 3 3 3 3,3 4 4 4 4 3 3 4 3 4 3 4 4 3 4 4 3 4 4 3> {(0, 59): 'tau2^-1', (2, 63): 't3^-1', (1, 120): 'tau1', (0, 50): 't2', (2, 54): 'tau2^-1', (0, 54): 'tau2^-1*t3^-1', (2, 45): 't2', (0, 41): 't3', (0, 45): 't2*tau3^-1', (0, 32): 't1', (2, 32): 't1', (2, 33): 't1', (2, 34): 't1', (1, 102): 'tau3^-1', (0, 26): 't1^-1', (1, 93): 'tau2', (2, 27): 't1', (0, 18): 't1^-1', (1, 84): 't2^-1', (2, 140): 't1^-1*tau3^-1*t2', (2, 141): 't1^-1*tau3^-1*t2', (2, 142): 't1^-1*tau3^-1*t2', (2, 143): 't1^-1', (0, 140): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 132): 'tau2*t3', (2, 133): 'tau2*t3', (2, 135): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1', (2, 35): 't1', (2, 131): 'tau2*t3', (0, 126): 't1*tau3*t2^-1', (2, 117): 'tau1', (0, 113): 'tau1^-1', (0, 117): 't3*tau2', (0, 104): 'tau3^-1', (2, 104): 'tau3^-1*t2', (2, 105): 'tau3^-1*t2', (2, 106): 'tau3^-1*t2', (2, 96): 'tau2*t3', (2, 97): 'tau2*t3', (1, 39): 't3', (2, 99): 'tau3^-1', (2, 95): 'tau2*t3', (1, 30): 't1', (0, 80): 't1^-1', (1, 138): 't1^-1*tau3^-1*t2*tau1*t3^-1*tau2^-1'}