U-tiling: UQC4055
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1170 |
*2223 |
(3,4,2) |
{8,6,6} |
{3.3.3.3.3.3.3.3}{3.3.3.3.3.3}{3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc13633
|
|
Pm-3m |
221 |
cubic |
{8,6,6} |
32 |
(3,4) |
G
|
False
|
|
sqc13634
|
|
I4132 |
214 |
cubic |
{8,6,6} |
32 |
(3,5) |
D
|
False
|
|
sqc11614
|
|
P4232 |
208 |
cubic |
{6,6,8} |
16 |
(3,4) |
Topological data
Vertex degrees | {8,6,6} |
2D vertex symbol | {3.3.3.3.3.3.3.3}{3.3.3.3.3.3}{3.3.3.3.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<4.1:432:19 3 5 7 9 28 12 14 16 18 21 23 25 27 30 32 34 36 109 39 41 43 45 82 48 50 52 54 163 57 59 61 63 136 66 68 70 72 199 75 77 79 81 84 86 88 90 226 93 95 97 99 235 102 104 106 108 111 113 115 117 208 120 122 124 126 262 129 131 133 135 138 140 142 144 289 147 149 151 153 298 156 158 160 162 165 167 169 171 271 174 176 178 180 316 183 185 187 189 325 192 194 196 198 201 203 205 207 210 212 214 216 334 219 221 223 225 228 230 232 234 237 239 241 243 352 246 248 250 252 361 255 257 259 261 264 266 268 270 273 275 277 279 370 282 284 286 288 291 293 295 297 300 302 304 306 379 309 311 313 315 318 320 322 324 327 329 331 333 336 338 340 342 397 345 347 349 351 354 356 358 360 363 365 367 369 372 374 376 378 381 383 385 387 415 390 392 394 396 399 401 403 405 424 408 410 412 414 417 419 421 423 426 428 430 432,2 21 6 9 8 11 30 15 18 17 20 24 27 26 29 33 36 35 38 111 42 45 44 47 84 51 54 53 56 165 60 63 62 65 138 69 72 71 74 201 78 81 80 83 87 90 89 92 228 96 99 98 101 237 105 108 107 110 114 117 116 119 210 123 126 125 128 264 132 135 134 137 141 144 143 146 291 150 153 152 155 300 159 162 161 164 168 171 170 173 273 177 180 179 182 318 186 189 188 191 327 195 198 197 200 204 207 206 209 213 216 215 218 336 222 225 224 227 231 234 233 236 240 243 242 245 354 249 252 251 254 363 258 261 260 263 267 270 269 272 276 279 278 281 372 285 288 287 290 294 297 296 299 303 306 305 308 381 312 315 314 317 321 324 323 326 330 333 332 335 339 342 341 344 399 348 351 350 353 357 360 359 362 366 369 368 371 375 378 377 380 384 387 386 389 417 393 396 395 398 402 405 404 407 426 411 414 413 416 420 423 422 425 429 432 431,46 4 5 42 43 17 18 64 13 14 60 61 82 22 23 78 79 35 36 136 31 32 132 133 91 40 41 107 108 49 50 96 97 125 126 145 58 59 161 162 67 68 150 151 179 180 181 76 77 197 198 85 86 186 187 215 216 94 95 224 225 190 103 104 159 160 226 112 113 177 178 242 243 388 121 122 168 169 244 130 131 260 261 139 140 249 250 278 279 148 149 287 288 253 157 158 289 166 167 305 306 406 175 176 184 185 314 315 193 194 258 259 316 202 203 276 277 332 333 415 211 212 267 268 307 220 221 303 304 229 230 411 412 341 342 325 238 239 285 286 247 248 350 351 256 257 352 265 266 368 369 424 274 275 343 283 284 292 293 393 394 377 378 361 301 302 310 311 366 367 319 320 429 430 386 387 328 329 348 349 379 337 338 375 376 346 347 355 356 420 421 404 405 364 365 397 373 374 382 383 402 403 391 392 413 414 400 401 409 410 418 419 431 432 427 428:3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3,8 6 6 8 8 6 8 6 6 6 6 6 6 6 6 6 8 8 8 6 6 6 6 8 8 8 6 8 6 6 8 6> {(2, 188): 'tau2^-1', (2, 187): 'tau2^-1', (1, 245): 't1^-1', (2, 178): 't2^-1', (2, 179): 't2^-1', (2, 428): 't2^-1*tau3*t1', (0, 171): 't2^-1', (2, 430): 'tau1*t3^-1', (2, 431): 'tau1*t3^-1', (2, 168): 't3^-1', (2, 420): 'tau2^-1', (2, 167): 't3^-1', (2, 419): 'tau2^-1', (2, 412): 'tau1', (2, 413): 'tau1', (1, 218): 't3^-1', (0, 414): 't3', (2, 378): 't3^-1', (2, 404): 't2*tau3^-1*t1^-1', (2, 279): 't2', (2, 401): 'tau1^-1*t3', (2, 402): 'tau1^-1*t3', (2, 403): 't2*tau3^-1*t1^-1', (1, 74): 't1^-1', (2, 266): 'tau2', (2, 117): 't3', (2, 132): 't1', (2, 385): 'tau2', (2, 386): 'tau2', (2, 131): 't1', (2, 250): 'tau3', (2, 251): 'tau3', (2, 423): 't2^-1', (0, 243): 't1^-1', (2, 374): 'tau1^-1', (2, 375): 'tau1^-1', (2, 240): 't2^-1', (2, 243): 't1^-1', (2, 239): 't2^-1', (1, 173): 't2^-1', (1, 416): 't3', (2, 224): 't3^-1', (0, 216): 't3^-1', (2, 223): 't3^-1', (2, 429): 't2^-1*tau3*t1', (2, 213): 'tau2^-1', (0, 342): 't2^-1', (1, 344): 't2^-1', (2, 204): 'tau3^-1', (0, 72): 't1^-1', (2, 203): 'tau3^-1', (2, 196): 't1', (2, 197): 't1', (2, 198): 't1'}